"""unit tests for sparse utility functions""" import numpy as np from numpy.testing import assert_equal, suppress_warnings from pytest import raises as assert_raises from scipy.sparse import sputils from scipy.sparse.sputils import matrix class TestSparseUtils: def test_upcast(self): assert_equal(sputils.upcast('intc'), np.intc) assert_equal(sputils.upcast('int32', 'float32'), np.float64) assert_equal(sputils.upcast('bool', complex, float), np.complex128) assert_equal(sputils.upcast('i', 'd'), np.float64) def test_getdtype(self): A = np.array([1], dtype='int8') assert_equal(sputils.getdtype(None, default=float), float) assert_equal(sputils.getdtype(None, a=A), np.int8) def test_isscalarlike(self): assert_equal(sputils.isscalarlike(3.0), True) assert_equal(sputils.isscalarlike(-4), True) assert_equal(sputils.isscalarlike(2.5), True) assert_equal(sputils.isscalarlike(1 + 3j), True) assert_equal(sputils.isscalarlike(np.array(3)), True) assert_equal(sputils.isscalarlike("16"), True) assert_equal(sputils.isscalarlike(np.array([3])), False) assert_equal(sputils.isscalarlike([[3]]), False) assert_equal(sputils.isscalarlike((1,)), False) assert_equal(sputils.isscalarlike((1, 2)), False) def test_isintlike(self): assert_equal(sputils.isintlike(-4), True) assert_equal(sputils.isintlike(np.array(3)), True) assert_equal(sputils.isintlike(np.array([3])), False) with suppress_warnings() as sup: sup.filter(DeprecationWarning, "Inexact indices into sparse matrices are deprecated") assert_equal(sputils.isintlike(3.0), True) assert_equal(sputils.isintlike(2.5), False) assert_equal(sputils.isintlike(1 + 3j), False) assert_equal(sputils.isintlike((1,)), False) assert_equal(sputils.isintlike((1, 2)), False) def test_isshape(self): assert_equal(sputils.isshape((1, 2)), True) assert_equal(sputils.isshape((5, 2)), True) assert_equal(sputils.isshape((1.5, 2)), False) assert_equal(sputils.isshape((2, 2, 2)), False) assert_equal(sputils.isshape(([2], 2)), False) assert_equal(sputils.isshape((-1, 2), nonneg=False),True) assert_equal(sputils.isshape((2, -1), nonneg=False),True) assert_equal(sputils.isshape((-1, 2), nonneg=True),False) assert_equal(sputils.isshape((2, -1), nonneg=True),False) def test_issequence(self): assert_equal(sputils.issequence((1,)), True) assert_equal(sputils.issequence((1, 2, 3)), True) assert_equal(sputils.issequence([1]), True) assert_equal(sputils.issequence([1, 2, 3]), True) assert_equal(sputils.issequence(np.array([1, 2, 3])), True) assert_equal(sputils.issequence(np.array([[1], [2], [3]])), False) assert_equal(sputils.issequence(3), False) def test_ismatrix(self): assert_equal(sputils.ismatrix(((),)), True) assert_equal(sputils.ismatrix([[1], [2]]), True) assert_equal(sputils.ismatrix(np.arange(3)[None]), True) assert_equal(sputils.ismatrix([1, 2]), False) assert_equal(sputils.ismatrix(np.arange(3)), False) assert_equal(sputils.ismatrix([[[1]]]), False) assert_equal(sputils.ismatrix(3), False) def test_isdense(self): assert_equal(sputils.isdense(np.array([1])), True) assert_equal(sputils.isdense(matrix([1])), True) def test_validateaxis(self): assert_raises(TypeError, sputils.validateaxis, (0, 1)) assert_raises(TypeError, sputils.validateaxis, 1.5) assert_raises(ValueError, sputils.validateaxis, 3) # These function calls should not raise errors for axis in (-2, -1, 0, 1, None): sputils.validateaxis(axis) def test_get_index_dtype(self): imax = np.iinfo(np.int32).max too_big = imax + 1 # Check that uint32's with no values too large doesn't return # int64 a1 = np.ones(90, dtype='uint32') a2 = np.ones(90, dtype='uint32') assert_equal( np.dtype(sputils.get_index_dtype((a1, a2), check_contents=True)), np.dtype('int32') ) # Check that if we can not convert but all values are less than or # equal to max that we can just convert to int32 a1[-1] = imax assert_equal( np.dtype(sputils.get_index_dtype((a1, a2), check_contents=True)), np.dtype('int32') ) # Check that if it can not convert directly and the contents are # too large that we return int64 a1[-1] = too_big assert_equal( np.dtype(sputils.get_index_dtype((a1, a2), check_contents=True)), np.dtype('int64') ) # test that if can not convert and didn't specify to check_contents # we return int64 a1 = np.ones(89, dtype='uint32') a2 = np.ones(89, dtype='uint32') assert_equal( np.dtype(sputils.get_index_dtype((a1, a2))), np.dtype('int64') ) # Check that even if we have arrays that can be converted directly # that if we specify a maxval directly it takes precedence a1 = np.ones(12, dtype='uint32') a2 = np.ones(12, dtype='uint32') assert_equal( np.dtype(sputils.get_index_dtype( (a1, a2), maxval=too_big, check_contents=True )), np.dtype('int64') ) # Check that an array with a too max size and maxval set # still returns int64 a1[-1] = too_big assert_equal( np.dtype(sputils.get_index_dtype((a1, a2), maxval=too_big)), np.dtype('int64') ) def test_check_shape_overflow(self): new_shape = sputils.check_shape([(10, -1)], (65535, 131070)) assert_equal(new_shape, (10, 858967245)) def test_matrix(self): a = [[1, 2, 3]] b = np.array(a) assert isinstance(sputils.matrix(a), np.matrix) assert isinstance(sputils.matrix(b), np.matrix) c = sputils.matrix(b) c[:, :] = 123 assert_equal(b, a) c = sputils.matrix(b, copy=False) c[:, :] = 123 assert_equal(b, [[123, 123, 123]]) def test_asmatrix(self): a = [[1, 2, 3]] b = np.array(a) assert isinstance(sputils.asmatrix(a), np.matrix) assert isinstance(sputils.asmatrix(b), np.matrix) c = sputils.asmatrix(b) c[:, :] = 123 assert_equal(b, [[123, 123, 123]])