from __future__ import division, print_function, absolute_import __all__ = ['geometric_slerp'] import warnings import numpy as np from scipy.spatial.distance import euclidean def _geometric_slerp(start, end, t): # create an orthogonal basis using QR decomposition basis = np.vstack([start, end]) Q, R = np.linalg.qr(basis.T) signs = 2 * (np.diag(R) >= 0) - 1 Q = Q.T * signs.T[:, np.newaxis] R = R.T * signs.T[:, np.newaxis] # calculate the angle between `start` and `end` c = np.dot(start, end) s = np.linalg.det(R) omega = np.arctan2(s, c) # interpolate start, end = Q s = np.sin(t * omega) c = np.cos(t * omega) return start * c[:, np.newaxis] + end * s[:, np.newaxis] def geometric_slerp(start, end, t, tol=1e-7): """ Geometric spherical linear interpolation. The interpolation occurs along a unit-radius great circle arc in arbitrary dimensional space. Parameters ---------- start : (n_dimensions, ) array-like Single n-dimensional input coordinate in a 1-D array-like object. `n` must be greater than 1. end : (n_dimensions, ) array-like Single n-dimensional input coordinate in a 1-D array-like object. `n` must be greater than 1. t: float or (n_points,) 1D array-like A float or 1D array-like of doubles representing interpolation parameters, with values required in the inclusive interval between 0 and 1. A common approach is to generate the array with ``np.linspace(0, 1, n_pts)`` for linearly spaced points. Ascending, descending, and scrambled orders are permitted. tol: float The absolute tolerance for determining if the start and end coordinates are antipodes. Returns ------- result : (t.size, D) An array of doubles containing the interpolated spherical path and including start and end when 0 and 1 t are used. The interpolated values should correspond to the same sort order provided in the t array. The result may be 1-dimensional if ``t`` is a float. Raises ------ ValueError If ``start`` and ``end`` are antipodes, not on the unit n-sphere, or for a variety of degenerate conditions. Notes ----- The implementation is based on the mathematical formula provided in [1]_, and the first known presentation of this algorithm, derived from study of 4-D geometry, is credited to Glenn Davis in a footnote of the original quaternion Slerp publication by Ken Shoemake [2]_. .. versionadded:: 1.5.0 References ---------- .. [1] https://en.wikipedia.org/wiki/Slerp#Geometric_Slerp .. [2] Ken Shoemake (1985) Animating rotation with quaternion curves. ACM SIGGRAPH Computer Graphics, 19(3): 245-254. See Also -------- scipy.spatial.transform.Slerp : 3-D Slerp that works with quaternions Examples -------- Interpolate four linearly-spaced values on the circumference of a circle spanning 90 degrees: >>> from scipy.spatial import geometric_slerp >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> start = np.array([1, 0]) >>> end = np.array([0, 1]) >>> t_vals = np.linspace(0, 1, 4) >>> result = geometric_slerp(start, ... end, ... t_vals) The interpolated results should be at 30 degree intervals recognizable on the unit circle: >>> ax.scatter(result[...,0], result[...,1], c='k') >>> circle = plt.Circle((0, 0), 1, color='grey') >>> ax.add_artist(circle) >>> ax.set_aspect('equal') >>> plt.show() Attempting to interpolate between antipodes on a circle is ambiguous because there are two possible paths, and on a sphere there are infinite possible paths on the geodesic surface. Nonetheless, one of the ambiguous paths is returned along with a warning: >>> opposite_pole = np.array([-1, 0]) >>> with np.testing.suppress_warnings() as sup: ... sup.filter(UserWarning) ... geometric_slerp(start, ... opposite_pole, ... t_vals) array([[ 1.00000000e+00, 0.00000000e+00], [ 5.00000000e-01, 8.66025404e-01], [-5.00000000e-01, 8.66025404e-01], [-1.00000000e+00, 1.22464680e-16]]) Extend the original example to a sphere and plot interpolation points in 3D: >>> from mpl_toolkits.mplot3d import proj3d >>> fig = plt.figure() >>> ax = fig.add_subplot(111, projection='3d') Plot the unit sphere for reference (optional): >>> u = np.linspace(0, 2 * np.pi, 100) >>> v = np.linspace(0, np.pi, 100) >>> x = np.outer(np.cos(u), np.sin(v)) >>> y = np.outer(np.sin(u), np.sin(v)) >>> z = np.outer(np.ones(np.size(u)), np.cos(v)) >>> ax.plot_surface(x, y, z, color='y', alpha=0.1) Interpolating over a larger number of points may provide the appearance of a smooth curve on the surface of the sphere, which is also useful for discretized integration calculations on a sphere surface: >>> start = np.array([1, 0, 0]) >>> end = np.array([0, 0, 1]) >>> t_vals = np.linspace(0, 1, 200) >>> result = geometric_slerp(start, ... end, ... t_vals) >>> ax.plot(result[...,0], ... result[...,1], ... result[...,2], ... c='k') >>> plt.show() """ start = np.asarray(start, dtype=np.float64) end = np.asarray(end, dtype=np.float64) t = np.asarray(t) if t.ndim > 1: raise ValueError("The interpolation parameter " "value must be one dimensional.") if start.ndim != 1 or end.ndim != 1: raise ValueError("Start and end coordinates " "must be one-dimensional") if start.size != end.size: raise ValueError("The dimensions of start and " "end must match (have same size)") if start.size < 2 or end.size < 2: raise ValueError("The start and end coordinates must " "both be in at least two-dimensional " "space") if np.array_equal(start, end): return np.linspace(start, start, t.size) # for points that violate equation for n-sphere for coord in [start, end]: if not np.allclose(np.linalg.norm(coord), 1.0, rtol=1e-9, atol=0): raise ValueError("start and end are not" " on a unit n-sphere") if not isinstance(tol, float): raise ValueError("tol must be a float") else: tol = np.fabs(tol) coord_dist = euclidean(start, end) # diameter of 2 within tolerance means antipodes, which is a problem # for all unit n-spheres (even the 0-sphere would have an ambiguous path) if np.allclose(coord_dist, 2.0, rtol=0, atol=tol): warnings.warn("start and end are antipodes" " using the specified tolerance;" " this may cause ambiguous slerp paths") t = np.asarray(t, dtype=np.float64) if t.size == 0: return np.empty((0, start.size)) if t.min() < 0 or t.max() > 1: raise ValueError("interpolation parameter must be in [0, 1]") if t.ndim == 0: return _geometric_slerp(start, end, np.atleast_1d(t)).ravel() else: return _geometric_slerp(start, end, t)