import numpy as np from numpy.testing import (assert_almost_equal, assert_array_equal, assert_equal, assert_) import pytest from scipy.spatial.distance import directed_hausdorff from scipy.spatial import distance from scipy._lib._util import check_random_state class TestHausdorff: # Test various properties of the directed Hausdorff code. def setup_method(self): np.random.seed(1234) random_angles = np.random.random(100) * np.pi * 2 random_columns = np.column_stack( (random_angles, random_angles, np.zeros(100))) random_columns[..., 0] = np.cos(random_columns[..., 0]) random_columns[..., 1] = np.sin(random_columns[..., 1]) random_columns_2 = np.column_stack( (random_angles, random_angles, np.zeros(100))) random_columns_2[1:, 0] = np.cos(random_columns_2[1:, 0]) * 2.0 random_columns_2[1:, 1] = np.sin(random_columns_2[1:, 1]) * 2.0 # move one point farther out so we don't have two perfect circles random_columns_2[0, 0] = np.cos(random_columns_2[0, 0]) * 3.3 random_columns_2[0, 1] = np.sin(random_columns_2[0, 1]) * 3.3 self.path_1 = random_columns self.path_2 = random_columns_2 self.path_1_4d = np.insert(self.path_1, 3, 5, axis=1) self.path_2_4d = np.insert(self.path_2, 3, 27, axis=1) def test_symmetry(self): # Ensure that the directed (asymmetric) Hausdorff distance is # actually asymmetric forward = directed_hausdorff(self.path_1, self.path_2)[0] reverse = directed_hausdorff(self.path_2, self.path_1)[0] assert_(forward != reverse) def test_brute_force_comparison_forward(self): # Ensure that the algorithm for directed_hausdorff gives the # same result as the simple / brute force approach in the # forward direction. actual = directed_hausdorff(self.path_1, self.path_2)[0] # brute force over rows: expected = max(np.amin(distance.cdist(self.path_1, self.path_2), axis=1)) assert_almost_equal(actual, expected, decimal=9) def test_brute_force_comparison_reverse(self): # Ensure that the algorithm for directed_hausdorff gives the # same result as the simple / brute force approach in the # reverse direction. actual = directed_hausdorff(self.path_2, self.path_1)[0] # brute force over columns: expected = max(np.amin(distance.cdist(self.path_1, self.path_2), axis=0)) assert_almost_equal(actual, expected, decimal=9) def test_degenerate_case(self): # The directed Hausdorff distance must be zero if both input # data arrays match. actual = directed_hausdorff(self.path_1, self.path_1)[0] assert_almost_equal(actual, 0.0, decimal=9) def test_2d_data_forward(self): # Ensure that 2D data is handled properly for a simple case # relative to brute force approach. actual = directed_hausdorff(self.path_1[..., :2], self.path_2[..., :2])[0] expected = max(np.amin(distance.cdist(self.path_1[..., :2], self.path_2[..., :2]), axis=1)) assert_almost_equal(actual, expected, decimal=9) def test_4d_data_reverse(self): # Ensure that 4D data is handled properly for a simple case # relative to brute force approach. actual = directed_hausdorff(self.path_2_4d, self.path_1_4d)[0] # brute force over columns: expected = max(np.amin(distance.cdist(self.path_1_4d, self.path_2_4d), axis=0)) assert_almost_equal(actual, expected, decimal=9) def test_indices(self): # Ensure that correct point indices are returned -- they should # correspond to the Hausdorff pair path_simple_1 = np.array([[-1,-12],[0,0], [1,1], [3,7], [1,2]]) path_simple_2 = np.array([[0,0], [1,1], [4,100], [10,9]]) actual = directed_hausdorff(path_simple_2, path_simple_1)[1:] expected = (2, 3) assert_array_equal(actual, expected) def test_random_state(self): # ensure that the global random state is not modified because # the directed Hausdorff algorithm uses randomization rs = check_random_state(None) old_global_state = rs.get_state() directed_hausdorff(self.path_1, self.path_2) rs2 = check_random_state(None) new_global_state = rs2.get_state() assert_equal(new_global_state, old_global_state) def test_random_state_None_int(self): # check that seed values of None or int do not alter global # random state for seed in [None, 27870671]: rs = check_random_state(None) old_global_state = rs.get_state() directed_hausdorff(self.path_1, self.path_2, seed) rs2 = check_random_state(None) new_global_state = rs2.get_state() assert_equal(new_global_state, old_global_state) def test_invalid_dimensions(self): # Ensure that a ValueError is raised when the number of columns # is not the same np.random.seed(1234) A = np.random.rand(3, 2) B = np.random.rand(4, 5) with pytest.raises(ValueError): directed_hausdorff(A, B) @pytest.mark.parametrize("A, B, seed, expected", [ # the two cases from gh-11332 ([(0,0)], [(0,1), (0,0)], 0, (0.0, 0, 1)), ([(0,0)], [(0,1), (0,0)], 1, (0.0, 0, 1)), # slightly more complex case ([(-5, 3), (0,0)], [(0,1), (0,0), (-5, 3)], 77098, # the maximum minimum distance will # be the last one found, but a unique # solution is not guaranteed more broadly (0.0, 1, 1)), ]) def test_subsets(self, A, B, seed, expected): # verify fix for gh-11332 actual = directed_hausdorff(u=A, v=B, seed=seed) # check distance assert_almost_equal(actual[0], expected[0], decimal=9) # check indices assert actual[1:] == expected[1:]