import numpy as np import itertools from numpy.testing import (assert_equal, assert_almost_equal, assert_array_equal, assert_array_almost_equal, suppress_warnings) import pytest from pytest import raises as assert_raises from pytest import warns as assert_warns from scipy.spatial import SphericalVoronoi, distance from scipy.optimize import linear_sum_assignment from scipy.constants import golden as phi from scipy.special import gamma TOL = 1E-10 def _generate_tetrahedron(): return np.array([[1, 1, 1], [1, -1, -1], [-1, 1, -1], [-1, -1, 1]]) def _generate_cube(): return np.array(list(itertools.product([-1, 1.], repeat=3))) def _generate_octahedron(): return np.array([[-1, 0, 0], [+1, 0, 0], [0, -1, 0], [0, +1, 0], [0, 0, -1], [0, 0, +1]]) def _generate_dodecahedron(): x1 = _generate_cube() x2 = np.array([[0, -phi, -1 / phi], [0, -phi, +1 / phi], [0, +phi, -1 / phi], [0, +phi, +1 / phi]]) x3 = np.array([[-1 / phi, 0, -phi], [+1 / phi, 0, -phi], [-1 / phi, 0, +phi], [+1 / phi, 0, +phi]]) x4 = np.array([[-phi, -1 / phi, 0], [-phi, +1 / phi, 0], [+phi, -1 / phi, 0], [+phi, +1 / phi, 0]]) return np.concatenate((x1, x2, x3, x4)) def _generate_icosahedron(): x = np.array([[0, -1, -phi], [0, -1, +phi], [0, +1, -phi], [0, +1, +phi]]) return np.concatenate([np.roll(x, i, axis=1) for i in range(3)]) def _generate_polytope(name): polygons = ["triangle", "square", "pentagon", "hexagon", "heptagon", "octagon", "nonagon", "decagon", "undecagon", "dodecagon"] polyhedra = ["tetrahedron", "cube", "octahedron", "dodecahedron", "icosahedron"] if name not in polygons and name not in polyhedra: raise ValueError("unrecognized polytope") if name in polygons: n = polygons.index(name) + 3 thetas = np.linspace(0, 2 * np.pi, n, endpoint=False) p = np.vstack([np.cos(thetas), np.sin(thetas)]).T elif name == "tetrahedron": p = _generate_tetrahedron() elif name == "cube": p = _generate_cube() elif name == "octahedron": p = _generate_octahedron() elif name == "dodecahedron": p = _generate_dodecahedron() elif name == "icosahedron": p = _generate_icosahedron() return p / np.linalg.norm(p, axis=1, keepdims=True) def _hypersphere_area(dim, radius): # https://en.wikipedia.org/wiki/N-sphere#Closed_forms return 2 * np.pi**(dim / 2) / gamma(dim / 2) * radius**(dim - 1) def _sample_sphere(n, dim, seed=None): # Sample points uniformly at random from the hypersphere rng = np.random.RandomState(seed=seed) points = rng.randn(n, dim) points /= np.linalg.norm(points, axis=1, keepdims=True) return points class TestSphericalVoronoi: def setup_method(self): self.points = np.array([ [-0.78928481, -0.16341094, 0.59188373], [-0.66839141, 0.73309634, 0.12578818], [0.32535778, -0.92476944, -0.19734181], [-0.90177102, -0.03785291, -0.43055335], [0.71781344, 0.68428936, 0.12842096], [-0.96064876, 0.23492353, -0.14820556], [0.73181537, -0.22025898, -0.6449281], [0.79979205, 0.54555747, 0.25039913]] ) def test_constructor(self): center = np.array([1, 2, 3]) radius = 2 s1 = SphericalVoronoi(self.points) # user input checks in SphericalVoronoi now require # the radius / center to match the generators so adjust # accordingly here s2 = SphericalVoronoi(self.points * radius, radius) s3 = SphericalVoronoi(self.points + center, center=center) s4 = SphericalVoronoi(self.points * radius + center, radius, center) assert_array_equal(s1.center, np.array([0, 0, 0])) assert_equal(s1.radius, 1) assert_array_equal(s2.center, np.array([0, 0, 0])) assert_equal(s2.radius, 2) assert_array_equal(s3.center, center) assert_equal(s3.radius, 1) assert_array_equal(s4.center, center) assert_equal(s4.radius, radius) def test_vertices_regions_translation_invariance(self): sv_origin = SphericalVoronoi(self.points) center = np.array([1, 1, 1]) sv_translated = SphericalVoronoi(self.points + center, center=center) assert_equal(sv_origin.regions, sv_translated.regions) assert_array_almost_equal(sv_origin.vertices + center, sv_translated.vertices) def test_vertices_regions_scaling_invariance(self): sv_unit = SphericalVoronoi(self.points) sv_scaled = SphericalVoronoi(self.points * 2, 2) assert_equal(sv_unit.regions, sv_scaled.regions) assert_array_almost_equal(sv_unit.vertices * 2, sv_scaled.vertices) def test_old_radius_api(self): sv_unit = SphericalVoronoi(self.points, radius=1) with suppress_warnings() as sup: sup.filter(DeprecationWarning, "`radius` is `None`") sv = SphericalVoronoi(self.points, None) assert_array_almost_equal(sv_unit.vertices, sv.vertices) def test_old_radius_api_warning(self): with assert_warns(DeprecationWarning): SphericalVoronoi(self.points, None) def test_sort_vertices_of_regions(self): sv = SphericalVoronoi(self.points) unsorted_regions = sv.regions sv.sort_vertices_of_regions() assert_equal(sorted(sv.regions), sorted(unsorted_regions)) def test_sort_vertices_of_regions_flattened(self): expected = sorted([[0, 6, 5, 2, 3], [2, 3, 10, 11, 8, 7], [0, 6, 4, 1], [4, 8, 7, 5, 6], [9, 11, 10], [2, 7, 5], [1, 4, 8, 11, 9], [0, 3, 10, 9, 1]]) expected = list(itertools.chain(*sorted(expected))) # type: ignore sv = SphericalVoronoi(self.points) sv.sort_vertices_of_regions() actual = list(itertools.chain(*sorted(sv.regions))) assert_array_equal(actual, expected) def test_sort_vertices_of_regions_dimensionality(self): points = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [0.5, 0.5, 0.5, 0.5]]) with pytest.raises(TypeError, match="three-dimensional"): sv = SphericalVoronoi(points) sv.sort_vertices_of_regions() def test_num_vertices(self): # for any n >= 3, a spherical Voronoi diagram has 2n - 4 # vertices; this is a direct consequence of Euler's formula # as explained by Dinis and Mamede (2010) Proceedings of the # 2010 International Symposium on Voronoi Diagrams in Science # and Engineering sv = SphericalVoronoi(self.points) expected = self.points.shape[0] * 2 - 4 actual = sv.vertices.shape[0] assert_equal(actual, expected) def test_voronoi_circles(self): sv = SphericalVoronoi(self.points) for vertex in sv.vertices: distances = distance.cdist(sv.points, np.array([vertex])) closest = np.array(sorted(distances)[0:3]) assert_almost_equal(closest[0], closest[1], 7, str(vertex)) assert_almost_equal(closest[0], closest[2], 7, str(vertex)) def test_duplicate_point_handling(self): # an exception should be raised for degenerate generators # related to Issue# 7046 self.degenerate = np.concatenate((self.points, self.points)) with assert_raises(ValueError): SphericalVoronoi(self.degenerate) def test_incorrect_radius_handling(self): # an exception should be raised if the radius provided # cannot possibly match the input generators with assert_raises(ValueError): SphericalVoronoi(self.points, radius=0.98) def test_incorrect_center_handling(self): # an exception should be raised if the center provided # cannot possibly match the input generators with assert_raises(ValueError): SphericalVoronoi(self.points, center=[0.1, 0, 0]) @pytest.mark.parametrize("dim", range(2, 6)) @pytest.mark.parametrize("shift", [False, True]) def test_single_hemisphere_handling(self, dim, shift): n = 10 points = _sample_sphere(n, dim, seed=0) points[:, 0] = np.abs(points[:, 0]) center = (np.arange(dim) + 1) * shift sv = SphericalVoronoi(points + center, center=center) dots = np.einsum('ij,ij->i', sv.vertices - center, sv.points[sv._simplices[:, 0]] - center) circumradii = np.arccos(np.clip(dots, -1, 1)) assert np.max(circumradii) > np.pi / 2 @pytest.mark.parametrize("n", [1, 2, 10]) @pytest.mark.parametrize("dim", range(2, 6)) @pytest.mark.parametrize("shift", [False, True]) def test_rank_deficient(self, n, dim, shift): center = (np.arange(dim) + 1) * shift points = _sample_sphere(n, dim - 1, seed=0) points = np.hstack([points, np.zeros((n, 1))]) with pytest.raises(ValueError, match="Rank of input points"): SphericalVoronoi(points + center, center=center) @pytest.mark.parametrize("dim", range(2, 6)) def test_higher_dimensions(self, dim): n = 100 points = _sample_sphere(n, dim, seed=0) sv = SphericalVoronoi(points) assert sv.vertices.shape[1] == dim assert len(sv.regions) == n # verify Euler characteristic cell_counts = [] simplices = np.sort(sv._simplices) for i in range(1, dim + 1): cells = [] for indices in itertools.combinations(range(dim), i): cells.append(simplices[:, list(indices)]) cells = np.unique(np.concatenate(cells), axis=0) cell_counts.append(len(cells)) expected_euler = 1 + (-1)**(dim-1) actual_euler = sum([(-1)**i * e for i, e in enumerate(cell_counts)]) assert expected_euler == actual_euler @pytest.mark.parametrize("dim", range(2, 6)) def test_cross_polytope_regions(self, dim): # The hypercube is the dual of the cross-polytope, so the voronoi # vertices of the cross-polytope lie on the points of the hypercube. # generate points of the cross-polytope points = np.concatenate((-np.eye(dim), np.eye(dim))) sv = SphericalVoronoi(points) assert all([len(e) == 2**(dim - 1) for e in sv.regions]) # generate points of the hypercube expected = np.vstack(list(itertools.product([-1, 1], repeat=dim))) expected = expected.astype(np.float64) / np.sqrt(dim) # test that Voronoi vertices are correctly placed dist = distance.cdist(sv.vertices, expected) res = linear_sum_assignment(dist) assert dist[res].sum() < TOL @pytest.mark.parametrize("dim", range(2, 6)) def test_hypercube_regions(self, dim): # The cross-polytope is the dual of the hypercube, so the voronoi # vertices of the hypercube lie on the points of the cross-polytope. # generate points of the hypercube points = np.vstack(list(itertools.product([-1, 1], repeat=dim))) points = points.astype(np.float64) / np.sqrt(dim) sv = SphericalVoronoi(points) # generate points of the cross-polytope expected = np.concatenate((-np.eye(dim), np.eye(dim))) # test that Voronoi vertices are correctly placed dist = distance.cdist(sv.vertices, expected) res = linear_sum_assignment(dist) assert dist[res].sum() < TOL @pytest.mark.parametrize("n", [10, 500]) @pytest.mark.parametrize("dim", [2, 3]) @pytest.mark.parametrize("radius", [0.5, 1, 2]) @pytest.mark.parametrize("shift", [False, True]) @pytest.mark.parametrize("single_hemisphere", [False, True]) def test_area_reconstitution(self, n, dim, radius, shift, single_hemisphere): points = _sample_sphere(n, dim, seed=0) # move all points to one side of the sphere for single-hemisphere test if single_hemisphere: points[:, 0] = np.abs(points[:, 0]) center = (np.arange(dim) + 1) * shift points = radius * points + center sv = SphericalVoronoi(points, radius=radius, center=center) areas = sv.calculate_areas() assert_almost_equal(areas.sum(), _hypersphere_area(dim, radius)) @pytest.mark.parametrize("poly", ["triangle", "dodecagon", "tetrahedron", "cube", "octahedron", "dodecahedron", "icosahedron"]) def test_equal_area_reconstitution(self, poly): points = _generate_polytope(poly) n, dim = points.shape sv = SphericalVoronoi(points) areas = sv.calculate_areas() assert_almost_equal(areas, _hypersphere_area(dim, 1) / n) def test_area_unsupported_dimension(self): dim = 4 points = np.concatenate((-np.eye(dim), np.eye(dim))) sv = SphericalVoronoi(points) with pytest.raises(TypeError, match="Only supported"): sv.calculate_areas() @pytest.mark.parametrize("radius", [1, 1.]) @pytest.mark.parametrize("center", [None, (1, 2, 3), (1., 2., 3.)]) def test_attribute_types(self, radius, center): points = radius * self.points if center is not None: points += center sv = SphericalVoronoi(points, radius=radius, center=center) assert sv.points.dtype is np.dtype(np.float64) assert sv.center.dtype is np.dtype(np.float64) assert isinstance(sv.radius, float) def test_region_types(self): # Tests that region integer type does not change # See Issue #13412 sv = SphericalVoronoi(self.points) dtype = type(sv.regions[0][0]) sv.sort_vertices_of_regions() assert type(sv.regions[0][0]) == dtype sv.sort_vertices_of_regions() assert type(sv.regions[0][0]) == dtype