"""Compute a Pade approximation for the principle branch of the Lambert W function around 0 and compare it to various other approximations. """ import numpy as np try: import mpmath import matplotlib.pyplot as plt # type: ignore[import] except ImportError: pass def lambertw_pade(): derivs = [mpmath.diff(mpmath.lambertw, 0, n=n) for n in range(6)] p, q = mpmath.pade(derivs, 3, 2) return p, q def main(): print(__doc__) with mpmath.workdps(50): p, q = lambertw_pade() p, q = p[::-1], q[::-1] print("p = {}".format(p)) print("q = {}".format(q)) x, y = np.linspace(-1.5, 1.5, 75), np.linspace(-1.5, 1.5, 75) x, y = np.meshgrid(x, y) z = x + 1j*y lambertw_std = [] for z0 in z.flatten(): lambertw_std.append(complex(mpmath.lambertw(z0))) lambertw_std = np.array(lambertw_std).reshape(x.shape) fig, axes = plt.subplots(nrows=3, ncols=1) # Compare Pade approximation to true result p = np.array([float(p0) for p0 in p]) q = np.array([float(q0) for q0 in q]) pade_approx = np.polyval(p, z)/np.polyval(q, z) pade_err = abs(pade_approx - lambertw_std) axes[0].pcolormesh(x, y, pade_err) # Compare two terms of asymptotic series to true result asy_approx = np.log(z) - np.log(np.log(z)) asy_err = abs(asy_approx - lambertw_std) axes[1].pcolormesh(x, y, asy_err) # Compare two terms of the series around the branch point to the # true result p = np.sqrt(2*(np.exp(1)*z + 1)) series_approx = -1 + p - p**2/3 series_err = abs(series_approx - lambertw_std) im = axes[2].pcolormesh(x, y, series_err) fig.colorbar(im, ax=axes.ravel().tolist()) plt.show() fig, ax = plt.subplots(nrows=1, ncols=1) pade_better = pade_err < asy_err im = ax.pcolormesh(x, y, pade_better) t = np.linspace(-0.3, 0.3) ax.plot(-2.5*abs(t) - 0.2, t, 'r') fig.colorbar(im, ax=ax) plt.show() if __name__ == '__main__': main()