import pytest import numpy as np from numpy.testing import assert_equal from scipy.special import log_ndtr, ndtri_exp from scipy.special._testutils import assert_func_equal def log_ndtr_ndtri_exp(y): return log_ndtr(ndtri_exp(y)) @pytest.fixture(scope="class") def uniform_random_points(): random_state = np.random.RandomState(1234) points = random_state.random_sample(1000) return points class TestNdtriExp: """Tests that ndtri_exp is sufficiently close to an inverse of log_ndtr. We have separate tests for the five intervals (-inf, -10), [-10, -2), [-2, -0.14542), [-0.14542, -1e-6), and [-1e-6, 0). ndtri_exp(y) is computed in three different ways depending on if y is in (-inf, -2), [-2, log(1 - exp(-2))], or [log(1 - exp(-2), 0). Each of these intervals is given its own test with two additional tests for handling very small values and values very close to zero. """ @pytest.mark.parametrize( "test_input", [-1e1, -1e2, -1e10, -1e20, -np.finfo(float).max] ) def test_very_small_arg(self, test_input, uniform_random_points): scale = test_input points = scale * (0.5 * uniform_random_points + 0.5) assert_func_equal( log_ndtr_ndtri_exp, lambda y: y, points, rtol=1e-14, nan_ok=True ) @pytest.mark.parametrize( "interval,expected_rtol", [ ((-10, -2), 1e-14), ((-2, -0.14542), 1e-12), ((-0.14542, -1e-6), 1e-10), ((-1e-6, 0), 1e-6), ], ) def test_in_interval(self, interval, expected_rtol, uniform_random_points): left, right = interval points = (right - left) * uniform_random_points + left assert_func_equal( log_ndtr_ndtri_exp, lambda y: y, points, rtol=expected_rtol, nan_ok=True ) def test_extreme(self): assert_func_equal( log_ndtr_ndtri_exp, lambda y: y, [-np.finfo(float).max, -np.finfo(float).min], rtol=1e-12, nan_ok=True ) def test_asymptotes(self): assert_equal(ndtri_exp([-np.inf, 0.0]), [-np.inf, np.inf]) def test_outside_domain(self): assert np.isnan(ndtri_exp(1.0))