import numpy as np # np is actually used, in the decorators below. import pytest from scipy.special._testutils import MissingModule, check_version from scipy.special._mptestutils import ( Arg, IntArg, mp_assert_allclose, assert_mpmath_equal) from scipy.special._precompute.gammainc_asy import ( compute_g, compute_alpha, compute_d) from scipy.special._precompute.gammainc_data import gammainc, gammaincc try: import sympy # type: ignore[import] except ImportError: sympy = MissingModule('sympy') try: import mpmath as mp except ImportError: mp = MissingModule('mpmath') @check_version(mp, '0.19') def test_g(): # Test data for the g_k. See DLMF 5.11.4. with mp.workdps(30): g = [mp.mpf(1), mp.mpf(1)/12, mp.mpf(1)/288, -mp.mpf(139)/51840, -mp.mpf(571)/2488320, mp.mpf(163879)/209018880, mp.mpf(5246819)/75246796800] mp_assert_allclose(compute_g(7), g) @pytest.mark.slow @check_version(mp, '0.19') @check_version(sympy, '0.7') @pytest.mark.xfail_on_32bit("rtol only 2e-11, see gh-6938") def test_alpha(): # Test data for the alpha_k. See DLMF 8.12.14. with mp.workdps(30): alpha = [mp.mpf(0), mp.mpf(1), mp.mpf(1)/3, mp.mpf(1)/36, -mp.mpf(1)/270, mp.mpf(1)/4320, mp.mpf(1)/17010, -mp.mpf(139)/5443200, mp.mpf(1)/204120] mp_assert_allclose(compute_alpha(9), alpha) @pytest.mark.xslow @check_version(mp, '0.19') @check_version(sympy, '0.7') def test_d(): # Compare the d_{k, n} to the results in appendix F of [1]. # # Sources # ------- # [1] DiDonato and Morris, Computation of the Incomplete Gamma # Function Ratios and their Inverse, ACM Transactions on # Mathematical Software, 1986. with mp.workdps(50): dataset = [(0, 0, -mp.mpf('0.333333333333333333333333333333')), (0, 12, mp.mpf('0.102618097842403080425739573227e-7')), (1, 0, -mp.mpf('0.185185185185185185185185185185e-2')), (1, 12, mp.mpf('0.119516285997781473243076536700e-7')), (2, 0, mp.mpf('0.413359788359788359788359788360e-2')), (2, 12, -mp.mpf('0.140925299108675210532930244154e-7')), (3, 0, mp.mpf('0.649434156378600823045267489712e-3')), (3, 12, -mp.mpf('0.191111684859736540606728140873e-7')), (4, 0, -mp.mpf('0.861888290916711698604702719929e-3')), (4, 12, mp.mpf('0.288658297427087836297341274604e-7')), (5, 0, -mp.mpf('0.336798553366358150308767592718e-3')), (5, 12, mp.mpf('0.482409670378941807563762631739e-7')), (6, 0, mp.mpf('0.531307936463992223165748542978e-3')), (6, 12, -mp.mpf('0.882860074633048352505085243179e-7')), (7, 0, mp.mpf('0.344367606892377671254279625109e-3')), (7, 12, -mp.mpf('0.175629733590604619378669693914e-6')), (8, 0, -mp.mpf('0.652623918595309418922034919727e-3')), (8, 12, mp.mpf('0.377358774161109793380344937299e-6')), (9, 0, -mp.mpf('0.596761290192746250124390067179e-3')), (9, 12, mp.mpf('0.870823417786464116761231237189e-6'))] d = compute_d(10, 13) res = [d[k][n] for k, n, std in dataset] std = map(lambda x: x[2], dataset) mp_assert_allclose(res, std) @check_version(mp, '0.19') def test_gammainc(): # Quick check that the gammainc in # special._precompute.gammainc_data agrees with mpmath's # gammainc. assert_mpmath_equal(gammainc, lambda a, x: mp.gammainc(a, b=x, regularized=True), [Arg(0, 100, inclusive_a=False), Arg(0, 100)], nan_ok=False, rtol=1e-17, n=50, dps=50) @pytest.mark.xslow @check_version(mp, '0.19') def test_gammaincc(): # Check that the gammaincc in special._precompute.gammainc_data # agrees with mpmath's gammainc. assert_mpmath_equal(lambda a, x: gammaincc(a, x, dps=1000), lambda a, x: mp.gammainc(a, a=x, regularized=True), [Arg(20, 100), Arg(20, 100)], nan_ok=False, rtol=1e-17, n=50, dps=1000) # Test the fast integer path assert_mpmath_equal(gammaincc, lambda a, x: mp.gammainc(a, a=x, regularized=True), [IntArg(1, 100), Arg(0, 100)], nan_ok=False, rtol=1e-17, n=50, dps=50)