""" sphinx.search ~~~~~~~~~~~~~ Create a full-text search index for offline search. :copyright: Copyright 2007-2022 by the Sphinx team, see AUTHORS. :license: BSD, see LICENSE for details. """ import html import pickle import re from importlib import import_module from os import path from typing import IO, Any, Dict, Iterable, List, Optional, Set, Tuple, Type from docutils import nodes from docutils.nodes import Element, Node from sphinx import addnodes, package_dir from sphinx.environment import BuildEnvironment from sphinx.search.jssplitter import splitter_code from sphinx.util import jsdump class SearchLanguage: """ This class is the base class for search natural language preprocessors. If you want to add support for a new language, you should override the methods of this class. You should override `lang` class property too (e.g. 'en', 'fr' and so on). .. attribute:: stopwords This is a set of stop words of the target language. Default `stopwords` is empty. This word is used for building index and embedded in JS. .. attribute:: js_splitter_code Return splitter function of JavaScript version. The function should be named as ``splitQuery``. And it should take a string and return list of strings. .. versionadded:: 3.0 .. attribute:: js_stemmer_code Return stemmer class of JavaScript version. This class' name should be ``Stemmer`` and this class must have ``stemWord`` method. This string is embedded as-is in searchtools.js. This class is used to preprocess search word which Sphinx HTML readers type, before searching index. Default implementation does nothing. """ lang: str = None language_name: str = None stopwords: Set[str] = set() js_splitter_code: str = None js_stemmer_rawcode: str = None js_stemmer_code = """ /** * Dummy stemmer for languages without stemming rules. */ var Stemmer = function() { this.stemWord = function(w) { return w; } } """ _word_re = re.compile(r'(?u)\w+') def __init__(self, options: Dict) -> None: self.options = options self.init(options) def init(self, options: Dict) -> None: """ Initialize the class with the options the user has given. """ def split(self, input: str) -> List[str]: """ This method splits a sentence into words. Default splitter splits input at white spaces, which should be enough for most languages except CJK languages. """ return self._word_re.findall(input) def stem(self, word: str) -> str: """ This method implements stemming algorithm of the Python version. Default implementation does nothing. You should implement this if the language has any stemming rules. This class is used to preprocess search words before registering them in the search index. The stemming of the Python version and the JS version (given in the js_stemmer_code attribute) must be compatible. """ return word def word_filter(self, word: str) -> bool: """ Return true if the target word should be registered in the search index. This method is called after stemming. """ return ( len(word) == 0 or not ( ((len(word) < 3) and (12353 < ord(word[0]) < 12436)) or (ord(word[0]) < 256 and ( word in self.stopwords )))) # SearchEnglish imported after SearchLanguage is defined due to circular import from sphinx.search.en import SearchEnglish def parse_stop_word(source: str) -> Set[str]: """ Parse snowball style word list like this: * http://snowball.tartarus.org/algorithms/finnish/stop.txt """ result: Set[str] = set() for line in source.splitlines(): line = line.split('|')[0] # remove comment result.update(line.split()) return result # maps language name to module.class or directly a class languages: Dict[str, Any] = { 'da': 'sphinx.search.da.SearchDanish', 'de': 'sphinx.search.de.SearchGerman', 'en': SearchEnglish, 'es': 'sphinx.search.es.SearchSpanish', 'fi': 'sphinx.search.fi.SearchFinnish', 'fr': 'sphinx.search.fr.SearchFrench', 'hu': 'sphinx.search.hu.SearchHungarian', 'it': 'sphinx.search.it.SearchItalian', 'ja': 'sphinx.search.ja.SearchJapanese', 'nl': 'sphinx.search.nl.SearchDutch', 'no': 'sphinx.search.no.SearchNorwegian', 'pt': 'sphinx.search.pt.SearchPortuguese', 'ro': 'sphinx.search.ro.SearchRomanian', 'ru': 'sphinx.search.ru.SearchRussian', 'sv': 'sphinx.search.sv.SearchSwedish', 'tr': 'sphinx.search.tr.SearchTurkish', 'zh': 'sphinx.search.zh.SearchChinese', } class _JavaScriptIndex: """ The search index as JavaScript file that calls a function on the documentation search object to register the index. """ PREFIX = 'Search.setIndex(' SUFFIX = ')' def dumps(self, data: Any) -> str: return self.PREFIX + jsdump.dumps(data) + self.SUFFIX def loads(self, s: str) -> Any: data = s[len(self.PREFIX):-len(self.SUFFIX)] if not data or not s.startswith(self.PREFIX) or not \ s.endswith(self.SUFFIX): raise ValueError('invalid data') return jsdump.loads(data) def dump(self, data: Any, f: IO) -> None: f.write(self.dumps(data)) def load(self, f: IO) -> Any: return self.loads(f.read()) js_index = _JavaScriptIndex() class WordCollector(nodes.NodeVisitor): """ A special visitor that collects words for the `IndexBuilder`. """ def __init__(self, document: nodes.document, lang: SearchLanguage) -> None: super().__init__(document) self.found_words: List[str] = [] self.found_title_words: List[str] = [] self.lang = lang def is_meta_keywords(self, node: Element) -> bool: if (isinstance(node, (addnodes.meta, addnodes.docutils_meta)) and node.get('name') == 'keywords'): meta_lang = node.get('lang') if meta_lang is None: # lang not specified return True elif meta_lang == self.lang.lang: # matched to html_search_language return True return False def dispatch_visit(self, node: Node) -> None: if isinstance(node, nodes.comment): raise nodes.SkipNode elif isinstance(node, nodes.raw): if 'html' in node.get('format', '').split(): # Some people might put content in raw HTML that should be searched, # so we just amateurishly strip HTML tags and index the remaining # content nodetext = re.sub(r'(?is)', '', node.astext()) nodetext = re.sub(r'(?is)', '', nodetext) nodetext = re.sub(r'<[^<]+?>', '', nodetext) self.found_words.extend(self.lang.split(nodetext)) raise nodes.SkipNode elif isinstance(node, nodes.Text): self.found_words.extend(self.lang.split(node.astext())) elif isinstance(node, nodes.title): self.found_title_words.extend(self.lang.split(node.astext())) elif isinstance(node, Element) and self.is_meta_keywords(node): keywords = node['content'] keywords = [keyword.strip() for keyword in keywords.split(',')] self.found_words.extend(keywords) class IndexBuilder: """ Helper class that creates a search index based on the doctrees passed to the `feed` method. """ formats = { 'jsdump': jsdump, 'pickle': pickle } def __init__(self, env: BuildEnvironment, lang: str, options: Dict, scoring: str) -> None: self.env = env self._titles: Dict[str, str] = {} # docname -> title self._filenames: Dict[str, str] = {} # docname -> filename self._mapping: Dict[str, Set[str]] = {} # stemmed word -> set(docname) # stemmed words in titles -> set(docname) self._title_mapping: Dict[str, Set[str]] = {} self._stem_cache: Dict[str, str] = {} # word -> stemmed word self._objtypes: Dict[Tuple[str, str], int] = {} # objtype -> index # objtype index -> (domain, type, objname (localized)) self._objnames: Dict[int, Tuple[str, str, str]] = {} # add language-specific SearchLanguage instance lang_class: Type[SearchLanguage] = languages.get(lang) # fallback; try again with language-code if lang_class is None and '_' in lang: lang_class = languages.get(lang.split('_')[0]) if lang_class is None: self.lang: SearchLanguage = SearchEnglish(options) elif isinstance(lang_class, str): module, classname = lang_class.rsplit('.', 1) lang_class = getattr(import_module(module), classname) self.lang = lang_class(options) else: # it's directly a class (e.g. added by app.add_search_language) self.lang = lang_class(options) if scoring: with open(scoring, 'rb') as fp: self.js_scorer_code = fp.read().decode() else: self.js_scorer_code = '' self.js_splitter_code = splitter_code def load(self, stream: IO, format: Any) -> None: """Reconstruct from frozen data.""" if isinstance(format, str): format = self.formats[format] frozen = format.load(stream) # if an old index is present, we treat it as not existing. if not isinstance(frozen, dict) or \ frozen.get('envversion') != self.env.version: raise ValueError('old format') index2fn = frozen['docnames'] self._filenames = dict(zip(index2fn, frozen['filenames'])) self._titles = dict(zip(index2fn, frozen['titles'])) def load_terms(mapping: Dict[str, Any]) -> Dict[str, Set[str]]: rv = {} for k, v in mapping.items(): if isinstance(v, int): rv[k] = {index2fn[v]} else: rv[k] = {index2fn[i] for i in v} return rv self._mapping = load_terms(frozen['terms']) self._title_mapping = load_terms(frozen['titleterms']) # no need to load keywords/objtypes def dump(self, stream: IO, format: Any) -> None: """Dump the frozen index to a stream.""" if isinstance(format, str): format = self.formats[format] format.dump(self.freeze(), stream) def get_objects(self, fn2index: Dict[str, int] ) -> Dict[str, List[Tuple[int, int, int, str, str]]]: rv: Dict[str, List[Tuple[int, int, int, str, str]]] = {} otypes = self._objtypes onames = self._objnames for domainname, domain in sorted(self.env.domains.items()): for fullname, dispname, type, docname, anchor, prio in \ sorted(domain.get_objects()): if docname not in fn2index: continue if prio < 0: continue fullname = html.escape(fullname) dispname = html.escape(dispname) prefix, _, name = dispname.rpartition('.') plist = rv.setdefault(prefix, []) try: typeindex = otypes[domainname, type] except KeyError: typeindex = len(otypes) otypes[domainname, type] = typeindex otype = domain.object_types.get(type) if otype: # use str() to fire translation proxies onames[typeindex] = (domainname, type, str(domain.get_type_name(otype))) else: onames[typeindex] = (domainname, type, type) if anchor == fullname: shortanchor = '' elif anchor == type + '-' + fullname: shortanchor = '-' else: shortanchor = anchor plist.append((fn2index[docname], typeindex, prio, shortanchor, name)) return rv def get_terms(self, fn2index: Dict) -> Tuple[Dict[str, List[str]], Dict[str, List[str]]]: rvs: Tuple[Dict[str, List[str]], Dict[str, List[str]]] = ({}, {}) for rv, mapping in zip(rvs, (self._mapping, self._title_mapping)): for k, v in mapping.items(): if len(v) == 1: fn, = v if fn in fn2index: rv[k] = fn2index[fn] else: rv[k] = sorted([fn2index[fn] for fn in v if fn in fn2index]) return rvs def freeze(self) -> Dict[str, Any]: """Create a usable data structure for serializing.""" docnames, titles = zip(*sorted(self._titles.items())) filenames = [self._filenames.get(docname) for docname in docnames] fn2index = {f: i for (i, f) in enumerate(docnames)} terms, title_terms = self.get_terms(fn2index) objects = self.get_objects(fn2index) # populates _objtypes objtypes = {v: k[0] + ':' + k[1] for (k, v) in self._objtypes.items()} objnames = self._objnames return dict(docnames=docnames, filenames=filenames, titles=titles, terms=terms, objects=objects, objtypes=objtypes, objnames=objnames, titleterms=title_terms, envversion=self.env.version) def label(self) -> str: return "%s (code: %s)" % (self.lang.language_name, self.lang.lang) def prune(self, docnames: Iterable[str]) -> None: """Remove data for all docnames not in the list.""" new_titles = {} new_filenames = {} for docname in docnames: if docname in self._titles: new_titles[docname] = self._titles[docname] new_filenames[docname] = self._filenames[docname] self._titles = new_titles self._filenames = new_filenames for wordnames in self._mapping.values(): wordnames.intersection_update(docnames) for wordnames in self._title_mapping.values(): wordnames.intersection_update(docnames) def feed(self, docname: str, filename: str, title: str, doctree: nodes.document) -> None: """Feed a doctree to the index.""" self._titles[docname] = title self._filenames[docname] = filename visitor = WordCollector(doctree, self.lang) doctree.walk(visitor) # memoize self.lang.stem def stem(word: str) -> str: try: return self._stem_cache[word] except KeyError: self._stem_cache[word] = self.lang.stem(word).lower() return self._stem_cache[word] _filter = self.lang.word_filter for word in visitor.found_title_words: stemmed_word = stem(word) if _filter(stemmed_word): self._title_mapping.setdefault(stemmed_word, set()).add(docname) elif _filter(word): # stemmer must not remove words from search index self._title_mapping.setdefault(word, set()).add(docname) for word in visitor.found_words: stemmed_word = stem(word) # again, stemmer must not remove words from search index if not _filter(stemmed_word) and _filter(word): stemmed_word = word already_indexed = docname in self._title_mapping.get(stemmed_word, set()) if _filter(stemmed_word) and not already_indexed: self._mapping.setdefault(stemmed_word, set()).add(docname) def context_for_searchtool(self) -> Dict[str, Any]: if self.lang.js_splitter_code: js_splitter_code = self.lang.js_splitter_code else: js_splitter_code = self.js_splitter_code return { 'search_language_stemming_code': self.get_js_stemmer_code(), 'search_language_stop_words': jsdump.dumps(sorted(self.lang.stopwords)), 'search_scorer_tool': self.js_scorer_code, 'search_word_splitter_code': js_splitter_code, } def get_js_stemmer_rawcodes(self) -> List[str]: """Returns a list of non-minified stemmer JS files to copy.""" if self.lang.js_stemmer_rawcode: return [ path.join(package_dir, 'search', 'non-minified-js', fname) for fname in ('base-stemmer.js', self.lang.js_stemmer_rawcode) ] else: return [] def get_js_stemmer_rawcode(self) -> Optional[str]: return None def get_js_stemmer_code(self) -> str: """Returns JS code that will be inserted into language_data.js.""" if self.lang.js_stemmer_rawcode: js_dir = path.join(package_dir, 'search', 'minified-js') with open(path.join(js_dir, 'base-stemmer.js')) as js_file: base_js = js_file.read() with open(path.join(js_dir, self.lang.js_stemmer_rawcode)) as js_file: language_js = js_file.read() return ('%s\n%s\nStemmer = %sStemmer;' % (base_js, language_js, self.lang.language_name)) else: return self.lang.js_stemmer_code