from packaging.version import Version, parse from typing import Optional import numpy as np import pandas as pd from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg, ) __all__ = [ "assert_frame_equal", "assert_index_equal", "assert_series_equal", "data_klasses", "frequencies", "is_numeric_dtype", "testing", "cache_readonly", "deprecate_kwarg", "Appender", "Substitution", "is_int_index", "is_float_index", "make_dataframe", "to_numpy", "PD_LT_1_0_0", "get_cached_func", "get_cached_doc", "call_cached_func", "PD_LT_1_4", ] version = parse(pd.__version__) PD_LT_1_0_0 = version < Version("1.0.0") PD_LT_1_4 = version < Version("1.3.99") try: from pandas.api.types import is_numeric_dtype except ImportError: from pandas.core.common import is_numeric_dtype try: from pandas.tseries import offsets as frequencies except ImportError: from pandas.tseries import frequencies data_klasses = (pd.Series, pd.DataFrame) try: import pandas.testing as testing except ImportError: import pandas.util.testing as testing assert_frame_equal = testing.assert_frame_equal assert_index_equal = testing.assert_index_equal assert_series_equal = testing.assert_series_equal def is_int_index(index: pd.Index) -> bool: """ Check if an index is integral Parameters ---------- index : pd.Index Any numeric index Returns ------- bool True if is an index with a standard integral type """ return ( isinstance(index, pd.Index) and isinstance(index.dtype, np.dtype) and np.issubdtype(index.dtype, np.integer) ) def is_float_index(index: pd.Index) -> bool: """ Check if an index is floating Parameters ---------- index : pd.Index Any numeric index Returns ------- bool True if an index with a standard numpy floating dtype """ return ( isinstance(index, pd.Index) and isinstance(index.dtype, np.dtype) and np.issubdtype(index.dtype, np.floating) ) try: from pandas._testing import makeDataFrame as make_dataframe except ImportError: import string def rands_array(nchars, size, dtype="O"): """ Generate an array of byte strings. """ rands_chars = np.array( list(string.ascii_letters + string.digits), dtype=(np.str_, 1) ) retval = ( np.random.choice(rands_chars, size=nchars * np.prod(size)) .view((np.str_, nchars)) .reshape(size) ) if dtype is None: return retval else: return retval.astype(dtype) def make_dataframe(): """ Simple verion of pandas._testing.makeDataFrame """ n = 30 k = 4 index = pd.Index(rands_array(nchars=10, size=n), name=None) data = { c: pd.Series(np.random.randn(n), index=index) for c in string.ascii_uppercase[:k] } return pd.DataFrame(data) def to_numpy(po: pd.DataFrame) -> np.ndarray: """ Workaround legacy pandas lacking to_numpy Parameters ---------- po : Pandas obkect Returns ------- ndarray A numpy array """ try: return po.to_numpy() except AttributeError: return po.values def get_cached_func(cached_prop): try: return cached_prop.fget except AttributeError: return cached_prop.func def call_cached_func(cached_prop, *args, **kwargs): f = get_cached_func(cached_prop) return f(*args, **kwargs) def get_cached_doc(cached_prop) -> Optional[str]: return get_cached_func(cached_prop).__doc__