import numpy as np from statsmodels.tools.testing import MarginTableTestBunch est = dict( rank=7, N=17, ic=6, k=7, k_eq=1, k_dv=1, converged=1, rc=0, k_autoCns=0, ll=-28.46285727296058, k_eq_model=1, ll_0=-101.6359341820935, df_m=6, chi2=146.3461538182658, p=4.58013206701e-29, r2_p=.719952814897477, properties="b V", depvar="sexecutions", which="max", technique="nr", singularHmethod="m-marquardt", ml_method="e2", crittype="log likelihood", user="poiss_lf", title="Poisson regression", vce="oim", opt="moptimize", chi2type="LR", gof="poiss_g", estat_cmd="poisson_estat", predict="poisso_p", cmd="poisson", cmdline="poisson sexecutions sincome sperpoverty sperblack LN_VC100k96 south sdegree", # noqa:E501 ) margins_table = np.array([ 47.514189267677, 12.722695157081, 3.7346009380122, .000188013074, 22.578164973516, 72.450213561838, np.nan, 1.9599639845401, 0, 2.3754103372885, 7.6314378245266, .31126642081184, .75559809249357, -12.58193294904, 17.332753623617, np.nan, 1.9599639845401, 0, -11.583732327397, 3.8511214886273, -3.007885459237, .00263072269737, -19.131791745195, -4.0356729095995, np.nan, 1.9599639845401, 0, -1.807106397978, 14.19277372084, -.12732580914219, .89868253380624, -29.624431731551, 26.010218935595, np.nan, 1.9599639845401, 0, 10.852916363139, 2.6197368291491, 4.1427506161617, .00003431650408, 5.7183265290336, 15.987506197244, np.nan, 1.9599639845401, 0, -26.588397789444, 7.6315578612519, -3.4840065780596, .00049396734722, -41.545976343431, -11.630819235457, np.nan, 1.9599639845401, 0]).reshape(6, 9) margins_table_colnames = 'b se z pvalue ll ul df crit eform'.split() margins_table_rownames = ['sincome', 'sperpoverty', 'sperblack', 'LN_VC100k96', 'south', 'sdegree'] margins_cov = np.array([ 10.87507957467, 3.4816608831283, .87483487811437, 3.1229403520191, -.87306122632875, -2.2870394487277, -12.321063650937, 3.4816608831283, 5.1715652306254, .27473956091394, 1.7908952063684, -.92880259796684, 1.8964947971413, -9.0063087868006, .87483487811437, .27473956091394, 1.1098392181639, -.99390727840297, -.34477731736542, -.98869834020742, .41772084541889, 3.1229403520191, 1.7908952063684, -.99390727840297, 17.912620004361, -.30763138390107, 2.8490197200257, -21.269786576194, -.87306122632875, -.92880259796684, -.34477731736542, -.30763138390107, .42666000427673, .05265352402592, 1.461997775289, -2.2870394487277, 1.8964947971413, -.98869834020742, 2.8490197200257, .05265352402592, 4.0773252373088, -4.46154120848, -12.321063650937, -9.0063087868006, .41772084541889, -21.269786576194, 1.461997775289, -4.46154120848, 37.559994394326]).reshape(7, 7) margins_cov_colnames = ['sincome', 'sperpoverty', 'sperblack', 'LN_VC100k96', 'south', 'sdegree', '_cons'] margins_cov_rownames = ['sincome', 'sperpoverty', 'sperblack', 'LN_VC100k96', 'south', 'sdegree', '_cons'] results_poisson_margins_cont = MarginTableTestBunch( margins_table=margins_table, margins_table_colnames=margins_table_colnames, margins_table_rownames=margins_table_rownames, margins_cov=margins_cov, margins_cov_colnames=margins_cov_colnames, margins_cov_rownames=margins_cov_rownames, **est ) est = dict( alpha=1.1399915663048, rank=8, N=17, ic=6, k=8, k_eq=2, k_dv=1, converged=1, rc=0, k_autoCns=0, ll=-27.58269157281191, k_eq_model=1, ll_0=-32.87628220135203, rank0=2, df_m=6, chi2=10.58718125708024, p=.1020042170100994, ll_c=-28.46285727296058, chi2_c=1.760331400297339, r2_p=.1610154881905236, k_aux=1, properties="b V", depvar="sexecutions", which="max", technique="nr", singularHmethod="m-marquardt", ml_method="e2", crittype="log likelihood", user="nbreg_lf", diparm1="lnalpha, exp label(", title="Negative binomial regression", vce="oim", opt="moptimize", chi2type="LR", chi2_ct="LR", diparm_opt2="noprob", dispers="mean", predict="nbreg_p", cmd="nbreg", cmdline="nbreg sexecutions sincome sperpoverty sperblack LN_VC100k96 south sdegree", # noqa:E501 ) margins_table = np.array([ 38.76996449636, 35.863089953808, 1.0810547709719, .27967275079666, -31.520400187424, 109.06032918014, np.nan, 1.9599639845401, 0, 2.5208248279391, 11.710699937092, .21525825454332, .82956597472339, -20.431725282518, 25.473374938396, np.nan, 1.9599639845401, 0, -8.225606184332, 9.557721280021, -.86062419517573, .38944505570119, -26.958395667445, 10.507183298781, np.nan, 1.9599639845401, 0, -4.4150939806524, 28.010544627225, -.15762256819387, .87475421903252, -59.314752637366, 50.484564676062, np.nan, 1.9599639845401, 0, 7.0049476220304, 6.3399264323903, 1.1048941492826, .26920545789466, -5.4210798500881, 19.430975094149, np.nan, 1.9599639845401, 0, -25.128303596214, 23.247820190364, -1.0808885904335, .279746674501, -70.693193888391, 20.436586695964, np.nan, 1.9599639845401, 0]).reshape(6, 9) margins_table_colnames = 'b se z pvalue ll ul df crit eform'.split() margins_table_rownames = ['sincome', 'sperpoverty', 'sperblack', 'LN_VC100k96', 'south', 'sdegree'] margins_cov = np.array([ 44.468037032422, 13.291812805254, .84306554343753, -.38095027773819, -2.1265212254924, -18.06714825989, -30.427077474507, .36347806905257, 13.291812805254, 15.093124820143, 3.3717840254072, -7.6860995498613, -3.3867901970823, -1.4200645173727, -12.979849717094, .51706617429388, .84306554343753, 3.3717840254072, 5.6928040093481, -12.140553562993, -2.5831646721297, -1.8071496111137, 7.961664784177, .27439267406128, -.38095027773819, -7.6860995498613, -12.140553562993, 91.950706114029, 6.6107070350689, 9.5470604840407, -82.665769963947, -1.1433180909155, -2.1265212254924, -3.3867901970823, -2.5831646721297, 6.6107070350689, 2.0499053083335, 1.7094543055869, -3.029543334606, -.34297224102579, -18.06714825989, -1.4200645173727, -1.8071496111137, 9.5470604840407, 1.7094543055869, 18.442703265156, -6.5839965105886, -.61952491151176, -30.427077474507, -12.979849717094, 7.961664784177, -82.665769963947, -3.029543334606, -6.5839965105886, 111.12618806587, .88600743091011, .36347806905257, .51706617429388, .27439267406128, -1.1433180909155, -.34297224102579, -.61952491151176, .88600743091011, .71851239110057 ]).reshape(8, 8) margins_cov_colnames = ['sincome', 'sperpoverty', 'sperblack', 'LN_VC100k96', 'south', 'sdegree', '_cons', '_cons'] margins_cov_rownames = ['sincome', 'sperpoverty', 'sperblack', 'LN_VC100k96', 'south', 'sdegree', '_cons', '_cons'] results_negbin_margins_cont = MarginTableTestBunch( margins_table=margins_table, margins_table_colnames=margins_table_colnames, margins_table_rownames=margins_table_rownames, margins_cov=margins_cov, margins_cov_colnames=margins_cov_colnames, margins_cov_rownames=margins_cov_rownames, **est ) est = dict( rank=7, N=17, ic=6, k=8, k_eq=1, k_dv=1, converged=1, rc=0, k_autoCns=1, ll=-28.46285727296058, k_eq_model=1, ll_0=-101.6359341820935, df_m=6, chi2=146.3461538182658, p=4.58013206701e-29, r2_p=.719952814897477, properties="b V", depvar="sexecutions", which="max", technique="nr", singularHmethod="m-marquardt", ml_method="e2", crittype="log likelihood", user="poiss_lf", title="Poisson regression", vce="oim", opt="moptimize", chi2type="LR", gof="poiss_g", estat_cmd="poisson_estat", predict="poisso_p", cmd="poisson", cmdline="poisson sexecutions sincome sperpoverty sperblack LN_VC100k96 i.south sdegree", # noqa:E501 ) margins_table = np.array([ 47.514189267677, 12.72269515678, 3.7346009381004, .00018801307393, 22.578164974105, 72.450213561249, np.nan, 1.9599639845401, 0, 2.3754103372885, 7.6314378245485, .31126642081095, .75559809249425, -12.581932949083, 17.33275362366, np.nan, 1.9599639845401, 0, -11.583732327397, 3.8511214887188, -3.0078854591656, .00263072269799, -19.131791745374, -4.0356729094203, np.nan, 1.9599639845401, 0, -1.807106397978, 14.192773720841, -.12732580914219, .89868253380624, -29.624431731552, 26.010218935596, np.nan, 1.9599639845401, 0, 0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 1.9599639845401, 0, 12.894515685772, 5.7673506886042, 2.2357779822979, .02536631788468, 1.5907160498956, 24.198315321648, np.nan, 1.9599639845401, 0, -26.588397789444, 7.6315578608763, -3.4840065782311, .00049396734691, -41.545976342695, -11.630819236193, np.nan, 1.9599639845401, 0]).reshape(7, 9) margins_table_colnames = 'b se z pvalue ll ul df crit eform'.split() margins_table_rownames = ['sincome', 'sperpoverty', 'sperblack', 'LN_VC100k96', '0b.south', '1.south', 'sdegree'] margins_cov = np.array([ 10.875079574674, 3.4816608831298, .87483487811447, 3.1229403520208, 0, -.873061226329, -2.2870394487282, -12.321063650942, 3.4816608831298, 5.1715652306252, .27473956091396, 1.7908952063684, 0, -.92880259796679, 1.8964947971405, -9.0063087868012, .87483487811447, .27473956091396, 1.109839218164, -.9939072784041, 0, -.34477731736544, -.98869834020768, .41772084541996, 3.1229403520208, 1.7908952063684, -.9939072784041, 17.912620004373, 0, -.30763138390086, 2.8490197200274, -21.269786576207, 0, 0, 0, 0, 0, 0, 0, 0, -.873061226329, -.92880259796679, -.34477731736544, -.30763138390086, 0, .42666000427672, .05265352402609, 1.4619977752889, -2.2870394487282, 1.8964947971405, -.98869834020768, 2.8490197200274, 0, .05265352402609, 4.0773252373089, -4.4615412084808, -12.321063650942, -9.0063087868012, .41772084541996, -21.269786576207, 0, 1.4619977752889, -4.4615412084808, 37.559994394343 ]).reshape(8, 8) margins_cov_colnames = ['sincome', 'sperpoverty', 'sperblack', 'LN_VC100k96', '0b.south', '1.south', 'sdegree', '_cons'] margins_cov_rownames = ['sincome', 'sperpoverty', 'sperblack', 'LN_VC100k96', '0b.south', '1.south', 'sdegree', '_cons'] results_poisson_margins_dummy = MarginTableTestBunch( margins_table=margins_table, margins_table_colnames=margins_table_colnames, margins_table_rownames=margins_table_rownames, margins_cov=margins_cov, margins_cov_colnames=margins_cov_colnames, margins_cov_rownames=margins_cov_rownames, **est ) est = dict( alpha=1.139991566304804, rank=8, N=17, ic=6, k=9, k_eq=2, k_dv=1, converged=1, rc=0, k_autoCns=1, ll=-27.58269157281191, k_eq_model=1, ll_0=-32.87628220135203, rank0=2, df_m=6, chi2=10.58718125708025, p=.1020042170100991, ll_c=-28.46285727296058, chi2_c=1.760331400297339, r2_p=.1610154881905237, k_aux=1, properties="b V", depvar="sexecutions", which="max", technique="nr", singularHmethod="m-marquardt", ml_method="e2", crittype="log likelihood", user="nbreg_lf", diparm1="lnalpha, exp label(", title="Negative binomial regression", vce="oim", opt="moptimize", chi2type="LR", chi2_ct="LR", diparm_opt2="noprob", dispers="mean", predict="nbreg_p", cmd="nbreg", cmdline="nbreg sexecutions sincome sperpoverty sperblack LN_VC100k96 i.south sdegree", # noqa:E501 ) margins_table = np.array([ 38.769964496355, 35.863089979665, 1.0810547701924, .27967275114341, -31.520400238107, 109.06032923082, np.nan, 1.9599639845401, 0, 2.5208248279388, 11.710699937639, .21525825453324, .82956597473124, -20.43172528359, 25.473374939467, np.nan, 1.9599639845401, 0, -8.2256061843309, 9.5577212853699, -.86062419469397, .38944505596662, -26.958395677928, 10.507183309266, np.nan, 1.9599639845401, 0, -4.4150939806521, 28.010544626815, -.15762256819618, .87475421903071, -59.314752636561, 50.484564675257, np.nan, 1.9599639845401, 0, 0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 1.9599639845401, 0, 8.0380552593041, 8.8634487485248, .90687671214231, .36447199739385, -9.3339850666211, 25.410095585229, np.nan, 1.9599639845401, 0, -25.12830359621, 23.247820207656, -1.0808885896294, .27974667485873, -70.693193922279, 20.436586729858, np.nan, 1.9599639845401, 0]).reshape(7, 9) margins_table_colnames = 'b se z pvalue ll ul df crit eform'.split() margins_table_rownames = ['sincome', 'sperpoverty', 'sperblack', 'LN_VC100k96', '0b.south', '1.south', 'sdegree'] margins_cov = np.array([ 44.468037032424, 13.291812805256, .84306554343906, -.38095027774827, 0, -2.1265212254934, -18.067148259892, -30.427077474499, .36347806905277, 13.291812805256, 15.093124820144, 3.3717840254072, -7.6860995498609, 0, -3.3867901970823, -1.4200645173736, -12.979849717095, .51706617429393, .84306554343906, 3.3717840254072, 5.6928040093478, -12.14055356299, 0, -2.5831646721296, -1.8071496111144, 7.9616647841741, .27439267406129, -.38095027774827, -7.6860995498609, -12.14055356299, 91.950706114005, 0, 6.6107070350678, 9.5470604840447, -82.665769963921, -1.1433180909154, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2.1265212254934, -3.3867901970823, -2.5831646721296, 6.6107070350678, 0, 2.0499053083335, 1.7094543055874, -3.0295433346046, -.34297224102581, -18.067148259892, -1.4200645173736, -1.8071496111144, 9.5470604840447, 0, 1.7094543055874, 18.442703265157, -6.5839965105912, -.61952491151187, -30.427077474499, -12.979849717095, 7.9616647841741, -82.665769963921, 0, -3.0295433346046, -6.5839965105912, 111.12618806584, .88600743090998, .36347806905277, .51706617429393, .27439267406129, -1.1433180909154, 0, -.34297224102581, -.61952491151187, .88600743090998, .71851239110059]).reshape(9, 9) margins_cov_colnames = ['sincome', 'sperpoverty', 'sperblack', 'LN_VC100k96', '0b.south', '1.south', 'sdegree', '_cons', '_cons'] margins_cov_rownames = ['sincome', 'sperpoverty', 'sperblack', 'LN_VC100k96', '0b.south', '1.south', 'sdegree', '_cons', '_cons'] results_negbin_margins_dummy = MarginTableTestBunch( margins_table=margins_table, margins_table_colnames=margins_table_colnames, margins_table_rownames=margins_table_rownames, margins_cov=margins_cov, margins_cov_colnames=margins_cov_colnames, margins_cov_rownames=margins_cov_rownames, **est )