import numpy as np from statsmodels.tools.testing import ParamsTableTestBunch est = dict( rank=7, N=10, ic=3, k=8, k_eq=1, k_dv=1, converged=1, rc=0, k_autoCns=1, ll=-33.45804471711131, k_eq_model=1, ll_0=-349.6684656479622, df_m=6, chi2=632.4208418617018, p=2.3617193197e-133, r2_p=.9043149497192691, cmdline="poisson deaths lnpyears smokes i.agecat", cmd="poisson", predict="poisso_p", estat_cmd="poisson_estat", gof="poiss_g", chi2type="LR", opt="moptimize", vce="oim", title="Poisson regression", user="poiss_lf", crittype="log likelihood", ml_method="e2", singularHmethod="m-marquardt", technique="nr", which="max", depvar="deaths", properties="b V", ) params_table = np.array([ .66308184237808, .63593388706566, 1.0426899019923, .29709193621918, -.58332567281917, 1.9094893575753, np.nan, 1.9599639845401, 0, .84966723812924, .94279599903649, .90122066597395, .36747100512904, -.99817896475073, 2.6975134410092, np.nan, 1.9599639845401, 0, 0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 1.9599639845401, 0, 1.3944392032504, .25613243411925, 5.4442117338454, 5.203529593e-08, .8924288571041, 1.8964495493967, np.nan, 1.9599639845401, 0, 2.389284381366, .48305517266329, 4.9461935542328, 7.567871319e-07, 1.4425136404002, 3.3360551223318, np.nan, 1.9599639845401, 0, 2.8385093615484, .98099727008295, 2.8934936397003, .00380982006764, .91579004325369, 4.7612286798431, np.nan, 1.9599639845401, 0, 2.9103531988515, 1.500316321385, 1.9398263935201, .05240079188831, -.03021275648066, 5.8509191541838, np.nan, 1.9599639845401, 0, -4.724924181641, 6.0276019460727, -.78388125558284, .43310978942119, -16.538806909087, 7.088958545805, np.nan, 1.9599639845401, 0 ]).reshape(8, 9) params_table_colnames = 'b se z pvalue ll ul df crit eform'.split() params_table_rownames = ['lnpyears', 'smokes', '1b.agecat', '2.agecat', '3.agecat', '4.agecat', '5.agecat', '_cons'] cov = np.array([ .40441190871844, -.59566294916097, 0, .1055698685775, .28413388045122, .61269322798077, .94624135329227, -3.8311942353131, -.59566294916097, .88886429579921, 0, -.15587944298625, -.4190789999425, -.90299843943229, -1.3940094688194, 5.6335527795822, 0, 0, 0, 0, 0, 0, 0, 0, .1055698685775, -.15587944298625, 0, .06560382380785, .10360281461667, .18937107288073, .27643306166968, -1.029211453947, .28413388045122, -.4190789999425, 0, .10360281461667, .23334229983676, .45990880867889, .69424104947043, -2.7206801001387, .61269322798077, -.90299843943229, 0, .18937107288073, .45990880867889, .96235564391021, 1.4630024143274, -5.8333014154113, .94624135329227, -1.3940094688194, 0, .27643306166968, .69424104947043, 1.4630024143274, 2.2509490642142, -8.993394678922, -3.8311942353131, 5.6335527795822, 0, -1.029211453947, -2.7206801001387, -5.8333014154113, -8.993394678922, 36.331985220299 ]).reshape(8, 8) cov_colnames = ['lnpyears', 'smokes', '1b.agecat', '2.agecat', '3.agecat', '4.agecat', '5.agecat', '_cons'] cov_rownames = ['lnpyears', 'smokes', '1b.agecat', '2.agecat', '3.agecat', '4.agecat', '5.agecat', '_cons'] results_noexposure_noconstraint = ParamsTableTestBunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est ) est = dict( rank=6, N=10, ic=3, k=7, k_eq=1, k_dv=1, converged=1, rc=0, k_autoCns=1, ll=-33.6001534405213, k_eq_model=1, ll_0=-495.0676356770329, df_m=5, chi2=922.9349644730232, p=2.8920463572e-197, r2_p=.9321301757191799, cmdline="poisson deaths smokes i.agecat, exposure(pyears)", cmd="poisson", predict="poisso_p", estat_cmd="poisson_estat", offset="ln(pyears)", gof="poiss_g", chi2type="LR", opt="moptimize", vce="oim", title="Poisson regression", user="poiss_lf", crittype="log likelihood", ml_method="e2", singularHmethod="m-marquardt", technique="nr", which="max", depvar="deaths", properties="b V", ) params_table = np.array([ .35453563725291, .10737411818853, 3.3018723993653, .00096041750265, .14408623273163, .56498504177418, np.nan, 1.9599639845401, 0, 0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 1.9599639845401, 0, 1.4840070063099, .19510337263434, 7.606260139291, 2.821411159e-14, 1.1016114226842, 1.8664025899355, np.nan, 1.9599639845401, 0, 2.6275051184579, .18372726944827, 14.301116684248, 2.153264398e-46, 2.2674062873614, 2.9876039495544, np.nan, 1.9599639845401, 0, 3.350492785161, .18479918093323, 18.130452571495, 1.832448146e-73, 2.9882930461593, 3.7126925241626, np.nan, 1.9599639845401, 0, 3.7000964518246, .19221951212105, 19.24932807807, 1.430055953e-82, 3.3233531309415, 4.0768397727077, np.nan, 1.9599639845401, 0, -7.919325711822, .19176181876223, -41.297719029467, 0, -8.2951719702059, -7.5434794534381, np.nan, 1.9599639845401, 0]).reshape(7, 9) params_table_colnames = 'b se z pvalue ll ul df crit eform'.split() params_table_rownames = ['smokes', '1b.agecat', '2.agecat', '3.agecat', '4.agecat', '5.agecat', '_cons'] cov = np.array([ .01152920125677, 0, -.00061561668833, -.00090117889461, -.00087280941113, -.00045274641397, -.00921219275997, 0, 0, 0, 0, 0, 0, 0, -.00061561668833, 0, .0380653260133, .02945988432334, .02945836949789, .0294359396881, -.0289198676971, -.00090117889461, 0, .02945988432334, .03375570953892, .0294799877675, .02944715358419, -.02869169455392, -.00087280941113, 0, .02945836949789, .0294799877675, .03415073727359, .02944603952766, -.02871436265941, -.00045274641397, 0, .0294359396881, .02944715358419, .02944603952766, .03694834084006, -.02905000614546, -.00921219275997, 0, -.0289198676971, -.02869169455392, -.02871436265941, -.02905000614546, .036772595135]).reshape(7, 7) cov_colnames = ['smokes', '1b.agecat', '2.agecat', '3.agecat', '4.agecat', '5.agecat', '_cons'] cov_rownames = ['smokes', '1b.agecat', '2.agecat', '3.agecat', '4.agecat', '5.agecat', '_cons'] results_exposure_noconstraint = ParamsTableTestBunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est ) est = dict( rank=6, N=10, ic=4, k=8, k_eq=1, k_dv=1, converged=1, rc=0, k_autoCns=1, ll=-33.46699798755848, k_eq_model=1, df_m=5, chi2=452.5895246742914, p=1.35732711092e-95, r2_p=np.nan, cmdline="poisson deaths lnpyears smokes i.agecat, constraints(1)", cmd="poisson", predict="poisso_p", estat_cmd="poisson_estat", gof="poiss_g", chi2type="Wald", opt="moptimize", vce="oim", title="Poisson regression", user="poiss_lf", crittype="log likelihood", ml_method="e2", singularHmethod="m-marquardt", technique="nr", which="max", depvar="deaths", properties="b V", ) params_table = np.array([ .57966535352347, .13107152221057, 4.4225117992619, 9.756001957e-06, .32276989059191, .83656081645503, np.nan, 1.9599639845401, 0, .97254074124891, .22289894431919, 4.3631464663029, .00001282050472, .5356668381913, 1.4094146443065, np.nan, 1.9599639845401, 0, 0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 1.9599639845401, 0, 1.3727621378494, .19798042377276, 6.9338276567436, 4.096036246e-12, .98472763761078, 1.760796638088, np.nan, 1.9599639845401, 0, 2.3307703209845, .20530981936838, 11.352454199, 7.210981748e-30, 1.92837046935, 2.7331701726189, np.nan, 1.9599639845401, 0, 2.71338890728, .29962471107816, 9.0559583604312, 1.353737255e-19, 2.1261352646886, 3.3006425498714, np.nan, 1.9599639845401, 0, 2.71338890728, .29962471107816, 9.0559583604312, 1.353737255e-19, 2.1261352646886, 3.3006425498714, np.nan, 1.9599639845401, 0, -3.9347864312059, 1.2543868840549, -3.1368204508696, .00170790683415, -6.3933395466329, -1.476233315779, np.nan, 1.9599639845401, 0 ]).reshape(8, 9) params_table_colnames = 'b se z pvalue ll ul df crit eform'.split() params_table_rownames = ['lnpyears', 'smokes', '1b.agecat', '2.agecat', '3.agecat', '4.agecat', '5.agecat', '_cons'] cov = np.array([ .0171797439346, -.02561346650005, 0, .00445310785396, .01204526460873, .03142116278001, .03142116278001, -.16245493266167, -.02561346650005, .04968393937861, 0, -.0069699735991, -.01845598801461, -.04723465558226, -.04723465558226, .2326939064726, 0, 0, 0, 0, 0, 0, 0, 0, .00445310785396, -.0069699735991, 0, .03919624819724, .03254829669461, .03756752462584, .03756752462584, -.07124751761252, .01204526460873, -.01845598801461, 0, .03254829669461, .04215212192908, .05145895528528, .05145895528528, -.14290240509701, .03142116278001, -.04723465558226, 0, .03756752462584, .05145895528528, .08977496748867, .08977496748867, -.32621483141938, .03142116278001, -.04723465558226, 0, .03756752462584, .05145895528528, .08977496748867, .08977496748867, -.32621483141938, -.16245493266167, .2326939064726, 0, -.07124751761252, -.14290240509701, -.32621483141938, -.32621483141938, 1.5734864548889 ]).reshape(8, 8) cov_colnames = ['lnpyears', 'smokes', '1b.agecat', '2.agecat', '3.agecat', '4.agecat', '5.agecat', '_cons'] cov_rownames = ['lnpyears', 'smokes', '1b.agecat', '2.agecat', '3.agecat', '4.agecat', '5.agecat', '_cons'] results_noexposure_constraint = ParamsTableTestBunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est ) est = dict( rank=5, N=10, ic=3, k=7, k_eq=1, k_dv=1, converged=1, rc=0, k_autoCns=1, ll=-38.45090497564205, k_eq_model=1, df_m=4, chi2=641.6446542589836, p=1.5005477751e-137, r2_p=np.nan, cmdline=("poisson deaths smokes i.agecat, " "exposure(pyears) constraints(1)"), cmd="poisson", predict="poisso_p", estat_cmd="poisson_estat", offset="ln(pyears)", gof="poiss_g", chi2type="Wald", opt="moptimize", vce="oim", title="Poisson regression", user="poiss_lf", crittype="log likelihood", ml_method="e2", singularHmethod="m-marquardt", technique="nr", which="max", depvar="deaths", properties="b V", ) params_table = np.array([ .34304077058284, .1073083520206, 3.196776058186, .00138972774083, .13272026538212, .55336127578356, np.nan, 1.9599639845401, 0, 0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 1.9599639845401, 0, 1.4846230896448, .19510453584194, 7.6093724999174, 2.754298692e-14, 1.1022252261742, 1.8670209531154, np.nan, 1.9599639845401, 0, 2.6284071093765, .18373002757074, 14.305811326156, 2.012766793e-46, 2.2683028724593, 2.9885113462937, np.nan, 1.9599639845401, 0, 3.4712405808805, .17983994458502, 19.301833020969, 5.183735658e-83, 3.1187607665121, 3.8237203952488, np.nan, 1.9599639845401, 0, 3.4712405808805, .17983994458502, 19.301833020969, 5.183735658e-83, 3.1187607665121, 3.8237203952488, np.nan, 1.9599639845401, 0, -7.9101515866812, .19164951521841, -41.274049546467, 0, -8.2857777341639, -7.5345254391986, np.nan, 1.9599639845401, 0]).reshape(7, 9) params_table_colnames = 'b se z pvalue ll ul df crit eform'.split() params_table_rownames = ['smokes', '1b.agecat', '2.agecat', '3.agecat', '4.agecat', '5.agecat', '_cons'] cov = np.array([ .01151508241338, 0, -.00061947268694, -.00090708285562, -.00074959767622, -.00074959767622, -.00917958318314, 0, 0, 0, 0, 0, 0, 0, -.00061947268694, 0, .0380657799061, .02946056271023, .0294520905375, .0294520905375, -.02891793401778, -.00090708285562, 0, .02946056271023, .03375672303114, .02947081310555, .02947081310555, -.02868865719866, -.00074959767622, 0, .0294520905375, .02947081310555, .03234240566834, .03234240566834, -.02881420109427, -.00074959767622, 0, .0294520905375, .02947081310555, .03234240566834, .03234240566834, -.02881420109427, -.00917958318314, 0, -.02891793401778, -.02868865719866, -.02881420109427, -.02881420109427, .03672953668345]).reshape(7, 7) cov_colnames = ['smokes', '1b.agecat', '2.agecat', '3.agecat', '4.agecat', '5.agecat', '_cons'] cov_rownames = ['smokes', '1b.agecat', '2.agecat', '3.agecat', '4.agecat', '5.agecat', '_cons'] results_exposure_constraint = ParamsTableTestBunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est ) est = dict( rank=6, N=10, ic=3, k=8, k_eq=1, k_dv=1, converged=1, rc=0, k_autoCns=1, ll=-33.78306559091298, k_eq_model=1, df_m=5, chi2=526.719430888018, p=1.3614066522e-111, r2_p=np.nan, cmdline="poisson deaths lnpyears smokes i.agecat, constraints(2)", cmd="poisson", predict="poisso_p", estat_cmd="poisson_estat", gof="poiss_g", chi2type="Wald", opt="moptimize", vce="oim", title="Poisson regression", user="poiss_lf", crittype="log likelihood", ml_method="e2", singularHmethod="m-marquardt", technique="nr", which="max", depvar="deaths", properties="b V", ) params_table = np.array([ 1.1598786864273, .13082965708054, 8.8655639119598, 7.611783820e-19, .90345727043975, 1.4163001024149, np.nan, 1.9599639845401, 0, .12111539473831, .22317899375276, .54268277090847, .58734823873758, -.31630739512299, .55853818459962, np.nan, 1.9599639845401, 0, 0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 1.9599639845401, 0, 1.5276244194375, .19848759770871, 7.6963217705896, 1.400389019e-14, 1.1385958765506, 1.9166529623245, np.nan, 1.9599639845401, 0, 2.7415571106656, .20647039325801, 13.278209371354, 3.097119459e-40, 2.3368825760061, 3.1462316453252, np.nan, 1.9599639845401, 0, 3.587300073596, .30160673316211, 11.893965482753, 1.272196529e-32, 2.9961617391034, 4.1784384080885, np.nan, 1.9599639845401, 0, 4.087300073596, .30160673316211, 13.551753406643, 7.735990122e-42, 3.4961617391034, 4.6784384080885, np.nan, 1.9599639845401, 0, -9.4376201542802, 1.2537557101599, -7.5274792990385, 5.172920628e-14, -11.894936191605, -6.9803041169553, np.nan, 1.9599639845401, 0 ]).reshape(8, 9) params_table_colnames = 'b se z pvalue ll ul df crit eform'.split() params_table_rownames = ['lnpyears', 'smokes', '1b.agecat', '2.agecat', '3.agecat', '4.agecat', '5.agecat', '_cons'] cov = np.array([ .01711639917181, -.02559852137367, 0, .00475026273828, .012305588195, .03167368550108, .03167368550108, -.16210959536359, -.02559852137367, .0498088632525, 0, -.00783669874902, -.01946551099054, -.0482099128044, -.0482099128044, .23336630265161, 0, 0, 0, 0, 0, 0, 0, 0, .00475026273828, -.00783669874902, 0, .03939732644417, .0328943776068, .0382554606876, .0382554606876, -.07382466315002, .012305588195, -.01946551099054, 0, .0328943776068, .04263002329212, .05226051095238, .05226051095238, -.14512177326509, .03167368550108, -.0482099128044, 0, .0382554606876, .05226051095238, .09096662148872, .09096662148872, -.32873181469848, .03167368550108, -.0482099128044, 0, .0382554606876, .05226051095238, .09096662148872, .09096662148872, -.32873181469848, -.16210959536359, .23336630265161, 0, -.07382466315002, -.14512177326509, -.32873181469848, -.32873181469848, 1.5719033807586 ]).reshape(8, 8) cov_colnames = ['lnpyears', 'smokes', '1b.agecat', '2.agecat', '3.agecat', '4.agecat', '5.agecat', '_cons'] cov_rownames = ['lnpyears', 'smokes', '1b.agecat', '2.agecat', '3.agecat', '4.agecat', '5.agecat', '_cons'] results_noexposure_constraint2 = ParamsTableTestBunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est ) est = dict( rank=5, N=10, ic=3, k=7, k_eq=1, k_dv=1, converged=1, rc=0, k_autoCns=1, ll=-34.5367006700131, k_eq_model=1, df_m=4, chi2=554.4168921897579, p=1.1331093797e-118, r2_p=np.nan, cmdline=("poisson deaths smokes i.agecat, " "exposure(pyears) constraints(2)"), cmd="poisson", predict="poisso_p", estat_cmd="poisson_estat", offset="ln(pyears)", gof="poiss_g", chi2type="Wald", opt="moptimize", vce="oim", title="Poisson regression", user="poiss_lf", crittype="log likelihood", ml_method="e2", singularHmethod="m-marquardt", technique="nr", which="max", depvar="deaths", properties="b V", ) params_table = np.array([ .35978347114582, .10730668667519, 3.3528522992687, .00079983377167, .14946622996212, .57010071232952, np.nan, 1.9599639845401, 0, 0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 1.9599639845401, 0, 1.4837272702102, .19510269288329, 7.6048528509946, 2.852282383e-14, 1.1013330188722, 1.8661215215483, np.nan, 1.9599639845401, 0, 2.6270956495127, .18372567328363, 14.299012231442, 2.219372691e-46, 2.2669999468414, 2.987191352184, np.nan, 1.9599639845401, 0, 3.2898291023835, .17982035319735, 18.295087535352, 9.055555257e-75, 2.9373876864294, 3.6422705183376, np.nan, 1.9599639845401, 0, 3.7898291023835, .17982035319735, 21.075640409983, 1.330935038e-98, 3.4373876864294, 4.1422705183376, np.nan, 1.9599639845401, 0, -7.9235211042587, .19177810950798, -41.316087245761, 0, -8.2993992919175, -7.5476429165999, np.nan, 1.9599639845401, 0]).reshape(7, 9) params_table_colnames = 'b se z pvalue ll ul df crit eform'.split() params_table_rownames = ['smokes', '1b.agecat', '2.agecat', '3.agecat', '4.agecat', '5.agecat', '_cons'] cov = np.array([ .01151472500521, 0, -.00061274288972, -.00089685568608, -.00069335681347, -.00069335681347, -.00921031399899, 0, 0, 0, 0, 0, 0, 0, -.00061274288972, 0, .03806506077031, .02945948985187, .02944866089267, .02944866089267, -.02892164840477, -.00089685568608, 0, .02945948985187, .03375512302352, .02946576868665, .02946576868665, -.0286943943397, -.00069335681347, 0, .02944866089267, .02946576868665, .03233535942402, .03233535942402, -.02885716752919, -.00069335681347, 0, .02944866089267, .02946576868665, .03233535942402, .03233535942402, -.02885716752919, -.00921031399899, 0, -.02892164840477, -.0286943943397, -.02885716752919, -.02885716752919, .03677884328645]).reshape(7, 7) cov_colnames = ['smokes', '1b.agecat', '2.agecat', '3.agecat', '4.agecat', '5.agecat', '_cons'] cov_rownames = ['smokes', '1b.agecat', '2.agecat', '3.agecat', '4.agecat', '5.agecat', '_cons'] results_exposure_constraint2 = ParamsTableTestBunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est ) est = dict( rank=5, N=10, ic=3, k=7, k_eq=1, k_dv=1, converged=1, rc=0, k_autoCns=1, ll=-34.5367006700131, k_eq_model=1, df_m=4, chi2=582.5215805315736, p=9.3932644024e-125, r2_p=np.nan, cmdline=("poisson deaths smokes i.agecat," "exposure(pyears) constraints(2) vce(robust)"), cmd="poisson", predict="poisso_p", estat_cmd="poisson_estat", offset="ln(pyears)", gof="poiss_g", chi2type="Wald", opt="moptimize", vcetype="Robust", vce="robust", title="Poisson regression", user="poiss_lf", crittype="log pseudolikelihood", ml_method="e2", singularHmethod="m-marquardt", technique="nr", which="max", depvar="deaths", properties="b V", ) params_table = np.array([ .35978347114582, .1172393358046, 3.0687948603312, .00214924117257, .1299985953974, .58956834689424, np.nan, 1.9599639845401, 0, 0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 1.9599639845401, 0, 1.4837272702102, .21969092615175, 6.7537030145039, 1.441186055e-11, 1.0531409672225, 1.9143135731979, np.nan, 1.9599639845401, 0, 2.6270956495127, .20894895542061, 12.572906355164, 2.975796525e-36, 2.217563222281, 3.0366280767443, np.nan, 1.9599639845401, 0, 3.2898291023835, .2211846822073, 14.873675109654, 4.885611722e-50, 2.8563150913252, 3.7233431134417, np.nan, 1.9599639845401, 0, 3.7898291023835, .2211846822073, 17.134229479922, 8.243780087e-66, 3.3563150913252, 4.2233431134417, np.nan, 1.9599639845401, 0, -7.9235211042587, .2479876721169, -31.951270144281, 5.18748229e-224, -8.4095680102177, -7.4374741982996, np.nan, 1.9599639845401, 0]).reshape(7, 9) params_table_colnames = 'b se z pvalue ll ul df crit eform'.split() params_table_rownames = ['smokes', '1b.agecat', '2.agecat', '3.agecat', '4.agecat', '5.agecat', '_cons'] cov = np.array([ .0137450618599, 0, .00249770233028, .00412347653263, .00486142402447, .00486142402447, -.01620342093134, 0, 0, 0, 0, 0, 0, 0, .00249770233028, 0, .04826410303341, .04389964215014, .04391744129373, .04391744129373, -.04609122424924, .00412347653263, 0, .04389964215014, .04365966597136, .04367917402468, .04367917402468, -.04726310745444, .00486142402447, 0, .04391744129373, .04367917402468, .04892266364314, .04892266364314, -.04794543190806, .00486142402447, 0, .04391744129373, .04367917402468, .04892266364314, .04892266364314, -.04794543190806, -.01620342093134, 0, -.04609122424924, -.04726310745444, -.04794543190806, -.04794543190806, .06149788552196]).reshape(7, 7) cov_colnames = ['smokes', '1b.agecat', '2.agecat', '3.agecat', '4.agecat', '5.agecat', '_cons'] cov_rownames = ['smokes', '1b.agecat', '2.agecat', '3.agecat', '4.agecat', '5.agecat', '_cons'] results_exposure_constraint2_robust = ParamsTableTestBunch( params_table=params_table, params_table_colnames=params_table_colnames, params_table_rownames=params_table_rownames, cov=cov, cov_colnames=cov_colnames, cov_rownames=cov_rownames, **est )