# -*- coding: utf-8 -*- """ Pickand's dependence functions as generators for EV-copulas Created on Wed Jan 27 14:33:40 2021 Author: Josef Perktold License: BSD-3 """ import numpy as np from scipy import stats from statsmodels.tools.numdiff import _approx_fprime_cs_scalar, approx_hess class PickandDependence(object): def __call__(self, *args, **kwargs): return self.evaluate(*args, **kwargs) def evaluate(self, t, *args): raise NotImplementedError def deriv(self, t, *args): """First derivative of the dependence function implemented through numerical differentiation """ t = np.atleast_1d(t) return _approx_fprime_cs_scalar(t, self.evaluate) def deriv2(self, t, *args): """Second derivative of the dependence function implemented through numerical differentiation """ if np.size(t) == 1: d2 = approx_hess([t], self.evaluate, args=args)[0] else: d2 = np.array([approx_hess([ti], self.evaluate, args=args)[0, 0] for ti in t]) return d2 class AsymLogistic(PickandDependence): '''asymmetric logistic model of Tawn 1988 special case: a1=a2=1 : Gumbel restrictions: - theta in (0,1] - a1, a2 in [0,1] ''' k_args = 3 def _check_args(self, a1, a2, theta): condth = (theta > 0) and (theta <= 1) conda1 = (a1 >= 0) and (a1 <= 1) conda2 = (a2 >= 0) and (a2 <= 1) return condth and conda1 and conda2 def evaluate(self, t, a1, a2, theta): # if not np.all(_check_args(a1, a2, theta)): # raise ValueError('invalid args') transf = (1 - a2) * (1-t) transf += (1 - a1) * t transf += ((a1 * t)**(1./theta) + (a2 * (1-t))**(1./theta))**theta return transf def deriv(self, t, a1, a2, theta): b = theta d1 = ((a1 * (a1 * t)**(1/b - 1) - a2 * (a2 * (1 - t))**(1/b - 1)) * ((a1 * t)**(1/b) + (a2 * (1 - t))**(1/b))**(b - 1) - a1 + a2) return d1 def deriv2(self, t, a1, a2, theta): b = theta d2 = ((1 - b) * (a1 * t)**(1/b) * (a2 * (1 - t))**(1/b) * ((a1 * t)**(1/b) + (a2 * (1 - t))**(1/b))**(b - 2) )/(b * (1 - t)**2 * t**2) return d2 transform_tawn = AsymLogistic() class AsymNegLogistic(PickandDependence): '''asymmetric negative logistic model of Joe 1990 special case: a1=a2=1 : symmetric negative logistic of Galambos 1978 restrictions: - theta in (0,inf) - a1, a2 in (0,1] ''' k_args = 3 def _check_args(self, a1, a2, theta): condth = (theta > 0) conda1 = (a1 > 0) and (a1 <= 1) conda2 = (a2 > 0) and (a2 <= 1) return condth and conda1 and conda2 def evaluate(self, t, a1, a2, theta): # if not np.all(self._check_args(a1, a2, theta)): # raise ValueError('invalid args') a1, a2 = a2, a1 transf = 1 - ((a1 * (1-t))**(-1./theta) + (a2 * t)**(-1./theta))**(-theta) return transf def deriv(self, t, a1, a2, theta): a1, a2 = a2, a1 m1 = -1 / theta m2 = m1 - 1 # (a1^(-1/θ) (1 - t)^(-1/θ - 1) - a2^(-1/θ) t^(-1/θ - 1))* # (a1^(-1/θ) (1 - t)^(-1/θ) + (a2 t)^(-1/θ))^(-θ - 1) d1 = (a1**m1 * (1 - t)**m2 - a2**m1 * t**m2) * ( (a1 * (1 - t))**m1 + (a2 * t)**m1)**(-theta - 1) return d1 def deriv2(self, t, a1, a2, theta): b = theta a1, a2 = a2, a1 a1tp = (a1 * (1 - t))**(1/b) a2tp = (a2 * t)**(1/b) a1tn = (a1 * (1 - t))**(-1/b) a2tn = (a2 * t)**(-1/b) t1 = (b + 1) * a2tp * a1tp * (a1tn + a2tn)**(-b) t2 = b * (1 - t)**2 * t**2 * (a1tp + a2tp)**2 d2 = t1 / t2 return d2 transform_joe = AsymNegLogistic() class AsymMixed(PickandDependence): '''asymmetric mixed model of Tawn 1988 special case: k=0, theta in [0,1] : symmetric mixed model of Tiago de Oliveira 1980 restrictions: - theta > 0 - theta + 3*k > 0 - theta + k <= 1 - theta + 2*k <= 1 ''' k_args = 2 def _check_args(self, theta, k): condth = (theta >= 0) cond1 = (theta + 3*k > 0) and (theta + k <= 1) and (theta + 2*k <= 1) return condth & cond1 def evaluate(self, t, theta, k): transf = 1 - (theta + k) * t + theta * t*t + k * t**3 return transf def deriv(self, t, theta, k): d_dt = - (theta + k) + 2 * theta * t + 3 * k * t**2 return d_dt def deriv2(self, t, theta, k): d2_dt2 = 2 * theta + 6 * k * t return d2_dt2 # backwards compatibility for now transform_tawn2 = AsymMixed() class AsymBiLogistic(PickandDependence): '''bilogistic model of Coles and Tawn 1994, Joe, Smith and Weissman 1992 restrictions: - (beta, delta) in (0,1)^2 or - (beta, delta) in (-inf,0)^2 not vectorized because of numerical integration ''' k_args = 2 def _check_args(self, beta, delta): cond1 = (beta > 0) and (beta <= 1) and (delta > 0) and (delta <= 1) cond2 = (beta < 0) and (delta < 0) return cond1 | cond2 def evaluate(self, t, beta, delta): # if not np.all(_check_args(beta, delta)): # raise ValueError('invalid args') def _integrant(w): term1 = (1 - beta) * np.power(w, -beta) * (1-t) term2 = (1 - delta) * np.power(1-w, -delta) * t return np.maximum(term1, term2) from scipy.integrate import quad transf = quad(_integrant, 0, 1)[0] return transf transform_bilogistic = AsymBiLogistic() class HR(PickandDependence): '''model of Huesler Reiss 1989 special case: a1=a2=1 : symmetric negative logistic of Galambos 1978 restrictions: - lambda in (0,inf) ''' k_args = 1 def _check_args(self, lamda): cond = (lamda > 0) return cond def evaluate(self, t, lamda): # if not np.all(self._check_args(lamda)): # raise ValueError('invalid args') term = np.log((1. - t) / t) * 0.5 / lamda from scipy.stats import norm # use special if I want to avoid stats import transf = ((1 - t) * norm._cdf(lamda + term) + t * norm._cdf(lamda - term)) return transf def _derivs(self, t, lamda, order=(1, 2)): if not isinstance(order, (int, np.integer)): if (1 in order) and (2 in order): order = -1 else: raise ValueError("order should be 1, 2, or (1,2)") dn = 1 / np.sqrt(2 * np.pi) a = lamda g = np.log((1. - t) / t) * 0.5 / a gd1 = 1 / (2 * a * (t - 1) * t) gd2 = (0.5 - t) / (a * ((1 - t) * t)**2) # f = stats.norm.cdf(t) # fd1 = np.exp(-t**2 / 2) / sqrt(2 * np.pi) # stats.norm.pdf(t) # fd2 = fd1 * t tp = a + g fp = stats.norm.cdf(tp) fd1p = np.exp(-tp**2 / 2) * dn # stats.norm.pdf(t) fd2p = -fd1p * tp tn = a - g fn = stats.norm.cdf(tn) fd1n = np.exp(-tn**2 / 2) * dn # stats.norm.pdf(t) fd2n = -fd1n * tn if order in (1, -1): # d1 = g'(t) (-t f'(a - g(t)) - (t - 1) f'(a + g(t))) + f(a - g(t)) # - f(a + g(t)) d1 = gd1 * (-t * fd1n - (t - 1) * fd1p) + fn - fp if order in (2, -1): # d2 = g'(t)^2 (t f''(a - g(t)) - (t - 1) f''(a + g(t))) + # (-(t - 1) g''(t) - 2 g'(t)) f'(a + g(t)) - # (t g''(t) + 2 g'(t)) f'(a - g(t)) d2 = (gd1**2 * (t * fd2n - (t - 1) * fd2p) + (-(t - 1) * gd2 - 2 * gd1) * fd1p - (t * gd2 + 2 * gd1) * fd1n ) if order == 1: return d1 elif order == 2: return d2 elif order == -1: return (d1, d2) def deriv(self, t, lamda): return self._derivs(t, lamda, 1) def deriv2(self, t, lamda): return self._derivs(t, lamda, 2) transform_hr = HR() # def transform_tev(t, rho, df): class TEV(PickandDependence): '''t-EV model of Demarta and McNeil 2005 restrictions: - rho in (-1,1) - x > 0 ''' k_args = 2 def _check_args(self, rho, df): x = df # alias, Genest and Segers use chi, copual package uses df cond1 = (x > 0) cond2 = (rho > 0) and (rho < 1) return cond1 and cond2 def evaluate(self, t, rho, df): x = df # alias, Genest and Segers use chi, copual package uses df # if not np.all(self, _check_args(rho, x)): # raise ValueError('invalid args') from scipy.stats import t as stats_t # use special if I want to avoid stats import term1 = (np.power(t/(1.-t), 1./x) - rho) # for t term2 = (np.power((1.-t)/t, 1./x) - rho) # for 1-t term0 = np.sqrt(1. + x) / np.sqrt(1 - rho*rho) z1 = term0 * term1 z2 = term0 * term2 transf = t * stats_t._cdf(z1, x+1) + (1 - t) * stats_t._cdf(z2, x+1) return transf transform_tev = TEV()