# -*- coding: utf-8 -*- """ Created on Fri Jan 29 19:19:45 2021 Author: Josef Perktold Author: Pamphile Roy License: BSD-3 """ import numpy as np from scipy import stats # scipy compat: from statsmodels.compat.scipy import multivariate_t from statsmodels.distributions.copula.copulas import Copula class EllipticalCopula(Copula): """Base class for elliptical copula This class requires subclassing and currently does not have generic methods based on an elliptical generator. Notes ----- Elliptical copulas require that copula parameters are set when the instance is created. Those parameters currently cannot be provided in the call to methods. (This will most likely change in future versions.) If non-empty ``args`` are provided in methods, then a ValueError is raised. The ``args`` keyword is provided for a consistent interface across copulas. """ def _handle_args(self, args): if args != () and args is not None: msg = ("Methods in elliptical copulas use copula parameters in" " attributes. `arg` in the method is ignored") raise ValueError(msg) else: return args def rvs(self, nobs=1, args=(), random_state=None): self._handle_args(args) x = self.distr_mv.rvs(size=nobs, random_state=random_state) return self.distr_uv.cdf(x) def pdf(self, u, args=()): self._handle_args(args) ppf = self.distr_uv.ppf(u) mv_pdf_ppf = self.distr_mv.pdf(ppf) return mv_pdf_ppf / np.prod(self.distr_uv.pdf(ppf), axis=-1) def cdf(self, u, args=()): self._handle_args(args) ppf = self.distr_uv.ppf(u) return self.distr_mv.cdf(ppf) def tau(self, corr=None): """Bivariate kendall's tau based on correlation coefficient. Parameters ---------- corr : None or float Pearson correlation. If corr is None, then the correlation will be taken from the copula attribute. Returns ------- Kendall's tau that corresponds to pearson correlation in the elliptical copula. """ if corr is None: corr = self.corr if corr.shape == (2, 2): corr = corr[0, 1] rho = 2 * np.arcsin(corr) / np.pi return rho def corr_from_tau(self, tau): """Pearson correlation from kendall's tau. Parameters ---------- tau : array_like Kendall's tau correlation coefficient. Returns ------- Pearson correlation coefficient for given tau in elliptical copula. This can be used as parameter for an elliptical copula. """ corr = np.sin(tau * np.pi / 2) return corr class GaussianCopula(EllipticalCopula): r"""Gaussian copula. It is constructed from a multivariate normal distribution over :math:`\mathbb{R}^d` by using the probability integral transform. For a given correlation matrix :math:`R \in[-1, 1]^{d \times d}`, the Gaussian copula with parameter matrix :math:`R` can be written as: .. math:: C_R^{\text{Gauss}}(u) = \Phi_R\left(\Phi^{-1}(u_1),\dots, \Phi^{-1}(u_d) \right), where :math:`\Phi^{-1}` is the inverse cumulative distribution function of a standard normal and :math:`\Phi_R` is the joint cumulative distribution function of a multivariate normal distribution with mean vector zero and covariance matrix equal to the correlation matrix :math:`R`. Parameters ---------- corr : scalar or array_like Correlation or scatter matrix for the elliptical copula. In the bivariate case, ``corr` can be a scalar and is then considered as the correlation coefficient. If ``corr`` is None, then the scatter matrix is the identity matrix. k_dim : int Dimension, number of components in the multivariate random variable. Notes ----- Elliptical copulas require that copula parameters are set when the instance is created. Those parameters currently cannot be provided in the call to methods. (This will most likely change in future versions.) If non-empty ``args`` are provided in methods, then a ValueError is raised. The ``args`` keyword is provided for a consistent interface across copulas. References ---------- .. [1] Joe, Harry, 2014, Dependence modeling with copulas. CRC press. p. 163 """ def __init__(self, corr=None, k_dim=2): super().__init__(k_dim=k_dim) if corr is None: corr = np.eye(k_dim) elif k_dim == 2 and np.size(corr) == 1: corr = np.array([[1., corr], [corr, 1.]]) self.corr = np.asarray(corr) self.distr_uv = stats.norm self.distr_mv = stats.multivariate_normal(cov=corr) def dependence_tail(self, corr=None): """ Bivariate tail dependence parameter. Joe (2014) p. 182 Parameters ---------- corr : any Tail dependence for Gaussian copulas is always zero. Argument will be ignored Returns ------- Lower and upper tail dependence coefficients of the copula with given Pearson correlation coefficient. """ return 0, 0 def _arg_from_tau(self, tau): # for generic compat return self.corr_from_tau(tau) class StudentTCopula(EllipticalCopula): """Student t copula. Parameters ---------- corr : scalar or array_like Correlation or scatter matrix for the elliptical copula. In the bivariate case, ``corr` can be a scalar and is then considered as the correlation coefficient. If ``corr`` is None, then the scatter matrix is the identity matrix. df : float (optional) Degrees of freedom of the multivariate t distribution. k_dim : int Dimension, number of components in the multivariate random variable. Notes ----- Elliptical copulas require that copula parameters are set when the instance is created. Those parameters currently cannot be provided in the call to methods. (This will most likely change in future versions.) If non-empty ``args`` are provided in methods, then a ValueError is raised. The ``args`` keyword is provided for a consistent interface across copulas. References ---------- .. [1] Joe, Harry, 2014, Dependence modeling with copulas. CRC press. p. 181 """ def __init__(self, corr=None, df=None, k_dim=2): super().__init__(k_dim=k_dim) if corr is None: corr = np.eye(k_dim) elif k_dim == 2 and np.size(corr) == 1: corr = np.array([[1., corr], [corr, 1.]]) self.df = df self.corr = np.asarray(corr) # both uv and mv are frozen distributions self.distr_uv = stats.t(df=df) self.distr_mv = multivariate_t(shape=corr, df=df) def cdf(self, u, args=()): raise NotImplementedError("CDF not available in closed form.") # ppf = self.distr_uv.ppf(u) # mvt = MVT([0, 0], self.corr, self.df) # return mvt.cdf(ppf) def spearmans_rho(self, corr=None): """ Bivariate Spearman's rho based on correlation coefficient. Joe (2014) p. 182 Parameters ---------- corr : None or float Pearson correlation. If corr is None, then the correlation will be taken from the copula attribute. Returns ------- Spearman's rho that corresponds to pearson correlation in the elliptical copula. """ if corr is None: corr = self.corr if corr.shape == (2, 2): corr = corr[0, 1] tau = 6 * np.arcsin(corr / 2) / np.pi return tau def dependence_tail(self, corr=None): """ Bivariate tail dependence parameter. Joe (2014) p. 182 Parameters ---------- corr : None or float Pearson correlation. If corr is None, then the correlation will be taken from the copula attribute. Returns ------- Lower and upper tail dependence coefficients of the copula with given Pearson correlation coefficient. """ if corr is None: corr = self.corr if corr.shape == (2, 2): corr = corr[0, 1] df = self.df t = - np.sqrt((df + 1) * (1 - corr) / 1 + corr) # Note self.distr_uv is frozen, df cannot change, use stats.t instead lam = 2 * stats.t.cdf(t, df + 1) return lam, lam def _arg_from_tau(self, tau): # for generic compat # this does not provide an estimate of df return self.corr_from_tau(tau)