import numpy as np coef_20_1_bre = np.array([-0.9185611]) se_20_1_bre = np.array([0.4706831]) time_20_1_bre = np.array([ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.1, 1.2, 1.3, 1.4, 1.5]) hazard_20_1_bre = np.array([ 0, 0, 0.04139181, 0.1755379, 0.3121216, 0.3121216, 0.4263121, 0.6196358, 0.6196358, 0.6196358, 0.909556, 1.31083, 1.31083]) coef_20_1_et_bre = np.array([-0.8907007]) se_20_1_et_bre = np.array([0.4683384]) time_20_1_et_bre = np.array([0]) hazard_20_1_et_bre = np.array([0]) coef_20_1_st_bre = np.array([-0.5766809]) se_20_1_st_bre = np.array([0.4418918]) time_20_1_st_bre = np.array([0]) hazard_20_1_st_bre = np.array([0]) coef_20_1_et_st_bre = np.array([-0.5785683]) se_20_1_et_st_bre = np.array([0.4388437]) time_20_1_et_st_bre = np.array([0]) hazard_20_1_et_st_bre = np.array([0]) coef_20_1_efr = np.array([-0.9975319]) se_20_1_efr = np.array([0.4792421]) time_20_1_efr = np.array([ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.1, 1.2, 1.3, 1.4, 1.5]) hazard_20_1_efr = np.array([ 0, 0, 0.03934634, 0.1663316, 0.2986427, 0.2986427, 0.4119189, 0.6077373, 0.6077373, 0.6077373, 0.8933041, 1.285732, 1.285732]) coef_20_1_et_efr = np.array([-0.9679541]) se_20_1_et_efr = np.array([0.4766406]) time_20_1_et_efr = np.array([0]) hazard_20_1_et_efr = np.array([0]) coef_20_1_st_efr = np.array([-0.6345294]) se_20_1_st_efr = np.array([0.4455952]) time_20_1_st_efr = np.array([0]) hazard_20_1_st_efr = np.array([0]) coef_20_1_et_st_efr = np.array([-0.6355622]) se_20_1_et_st_efr = np.array([0.4423104]) time_20_1_et_st_efr = np.array([0]) hazard_20_1_et_st_efr = np.array([0]) coef_50_1_bre = np.array([-0.6761247]) se_50_1_bre = np.array([0.25133]) time_50_1_bre = np.array([ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.5, 1.6, 1.7, 1.8, 1.9, 2.4, 2.8]) hazard_50_1_bre = np.array([ 0, 0.04895521, 0.08457461, 0.2073863, 0.2382473, 0.2793018, 0.3271622, 0.3842953, 0.3842953, 0.5310807, 0.6360276, 0.7648251, 0.7648251, 0.9294298, 0.9294298, 0.9294298, 1.206438, 1.555569, 1.555569]) coef_50_1_et_bre = np.array([-0.6492871]) se_50_1_et_bre = np.array([0.2542493]) time_50_1_et_bre = np.array([0]) hazard_50_1_et_bre = np.array([0]) coef_50_1_st_bre = np.array([-0.7051135]) se_50_1_st_bre = np.array([0.2852093]) time_50_1_st_bre = np.array([0]) hazard_50_1_st_bre = np.array([0]) coef_50_1_et_st_bre = np.array([-0.8672546]) se_50_1_et_st_bre = np.array([0.3443235]) time_50_1_et_st_bre = np.array([0]) hazard_50_1_et_st_bre = np.array([0]) coef_50_1_efr = np.array([-0.7119322]) se_50_1_efr = np.array([0.2533563]) time_50_1_efr = np.array([ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.5, 1.6, 1.7, 1.8, 1.9, 2.4, 2.8]) hazard_50_1_efr = np.array([ 0, 0.04773902, 0.08238731, 0.2022993, 0.2327053, 0.2736316, 0.3215519, 0.3787123, 0.3787123, 0.526184, 0.6323073, 0.7627338, 0.7627338, 0.9288858, 0.9288858, 0.9288858, 1.206835, 1.556054, 1.556054]) coef_50_1_et_efr = np.array([-0.7103063]) se_50_1_et_efr = np.array([0.2598129]) time_50_1_et_efr = np.array([0]) hazard_50_1_et_efr = np.array([0]) coef_50_1_st_efr = np.array([-0.7417904]) se_50_1_st_efr = np.array([0.2846437]) time_50_1_st_efr = np.array([0]) hazard_50_1_st_efr = np.array([0]) coef_50_1_et_st_efr = np.array([-0.9276112]) se_50_1_et_st_efr = np.array([0.3462638]) time_50_1_et_st_efr = np.array([0]) hazard_50_1_et_st_efr = np.array([0]) coef_50_2_bre = np.array([-0.5935189, 0.5035724]) se_50_2_bre = np.array([0.2172841, 0.2399933]) time_50_2_bre = np.array([ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.9, 2.7, 2.9]) hazard_50_2_bre = np.array([ 0.02695812, 0.09162381, 0.1309537, 0.1768423, 0.2033353, 0.2033353, 0.3083449, 0.3547287, 0.4076453, 0.4761318, 0.5579718, 0.7610905, 0.918962, 0.918962, 1.136173, 1.605757, 2.457676, 2.457676]) coef_50_2_et_bre = np.array([-0.4001465, 0.4415933]) se_50_2_et_bre = np.array([0.1992302, 0.2525949]) time_50_2_et_bre = np.array([0]) hazard_50_2_et_bre = np.array([0]) coef_50_2_st_bre = np.array([-0.6574891, 0.4416079]) se_50_2_st_bre = np.array([0.2753398, 0.269458]) time_50_2_st_bre = np.array([0]) hazard_50_2_st_bre = np.array([0]) coef_50_2_et_st_bre = np.array([-0.3607069, 0.2731982]) se_50_2_et_st_bre = np.array([0.255415, 0.306942]) time_50_2_et_st_bre = np.array([0]) hazard_50_2_et_st_bre = np.array([0]) coef_50_2_efr = np.array([-0.6107485, 0.5309737]) se_50_2_efr = np.array([0.2177713, 0.2440535]) time_50_2_efr = np.array([ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.9, 2.7, 2.9]) hazard_50_2_efr = np.array([ 0.02610571, 0.08933637, 0.1279094, 0.1731699, 0.19933, 0.19933, 0.303598, 0.3497025, 0.4023939, 0.4706978, 0.5519237, 0.7545023, 0.9129989, 0.9129989, 1.13186, 1.60574, 2.472615, 2.472615]) coef_50_2_et_efr = np.array([-0.4092002, 0.4871344]) se_50_2_et_efr = np.array([0.1968905, 0.2608527]) time_50_2_et_efr = np.array([0]) hazard_50_2_et_efr = np.array([0]) coef_50_2_st_efr = np.array([-0.6631286, 0.4663285]) se_50_2_st_efr = np.array([0.2748224, 0.273603]) time_50_2_st_efr = np.array([0]) hazard_50_2_st_efr = np.array([0]) coef_50_2_et_st_efr = np.array([-0.3656059, 0.2943912]) se_50_2_et_st_efr = np.array([0.2540752, 0.3124632]) time_50_2_et_st_efr = np.array([0]) hazard_50_2_et_st_efr = np.array([0]) coef_100_5_bre = np.array([ -0.529776, -0.2916374, -0.1205425, 0.3493476, 0.6034305]) se_100_5_bre = np.array([ 0.1789305, 0.1482505, 0.1347422, 0.1528205, 0.1647927]) time_100_5_bre = np.array([ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.5, 2.8, 3.2, 3.3]) hazard_100_5_bre = np.array([ 0.02558588, 0.05608812, 0.1087773, 0.1451098, 0.1896703, 0.2235791, 0.3127521, 0.3355107, 0.439452, 0.504983, 0.5431706, 0.5841462, 0.5841462, 0.5841462, 0.6916466, 0.7540191, 0.8298704, 1.027876, 1.170335, 1.379306, 1.648758, 1.943177, 1.943177, 1.943177, 4.727101]) coef_100_5_et_bre = np.array([ -0.4000784, -0.1790941, -0.1378969, 0.3288529, 0.533246]) se_100_5_et_bre = np.array([ 0.1745655, 0.1513545, 0.1393968, 0.1487803, 0.1686992]) time_100_5_et_bre = np.array([0]) hazard_100_5_et_bre = np.array([0]) coef_100_5_st_bre = np.array([ -0.53019, -0.3225739, -0.1241568, 0.3246598, 0.6196859]) se_100_5_st_bre = np.array([ 0.1954581, 0.1602811, 0.1470644, 0.17121, 0.1784115]) time_100_5_st_bre = np.array([0]) hazard_100_5_st_bre = np.array([0]) coef_100_5_et_st_bre = np.array([ -0.3977171, -0.2166136, -0.1387623, 0.3251726, 0.5664705]) se_100_5_et_st_bre = np.array([ 0.1951054, 0.1707925, 0.1501968, 0.1699932, 0.1843428]) time_100_5_et_st_bre = np.array([0]) hazard_100_5_et_st_bre = np.array([0]) coef_100_5_efr = np.array([ -0.5641909, -0.3233021, -0.1234858, 0.3712328, 0.6421963]) se_100_5_efr = np.array([ 0.1804027, 0.1496253, 0.1338531, 0.1529832, 0.1670848]) time_100_5_efr = np.array([ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.5, 2.8, 3.2, 3.3]) hazard_100_5_efr = np.array([ 0.02393412, 0.05276399, 0.1028432, 0.1383859, 0.1823461, 0.2158107, 0.3037825, 0.3264864, 0.4306648, 0.4964367, 0.5348595, 0.5760305, 0.5760305, 0.5760305, 0.6842238, 0.7468135, 0.8228841, 1.023195, 1.166635, 1.379361, 1.652898, 1.950119, 1.950119, 1.950119, 4.910635]) coef_100_5_et_efr = np.array([ -0.4338666, -0.2140139, -0.1397387, 0.3535993, 0.5768645]) se_100_5_et_efr = np.array([ 0.1756485, 0.1527244, 0.138298, 0.1488427, 0.1716654]) time_100_5_et_efr = np.array([0]) hazard_100_5_et_efr = np.array([0]) coef_100_5_st_efr = np.array([ -0.5530876, -0.3331652, -0.128381, 0.3503472, 0.6397813]) se_100_5_st_efr = np.array([ 0.1969338, 0.1614976, 0.1464088, 0.171299, 0.1800787]) time_100_5_st_efr = np.array([0]) hazard_100_5_st_efr = np.array([0]) coef_100_5_et_st_efr = np.array([ -0.421153, -0.2350069, -0.1433638, 0.3538863, 0.5934568]) se_100_5_et_st_efr = np.array([ 0.1961729, 0.1724719, 0.1492979, 0.170464, 0.1861849]) time_100_5_et_st_efr = np.array([0]) hazard_100_5_et_st_efr = np.array([0]) coef_1000_10_bre = np.array([ -0.4699279, -0.464557, -0.308411, -0.2158298, -0.09048563, 0.09359662, 0.112588, 0.3343705, 0.3480601, 0.5634985]) se_1000_10_bre = np.array([ 0.04722914, 0.04785291, 0.04503528, 0.04586872, 0.04429793, 0.0446141, 0.04139944, 0.04464292, 0.04559903, 0.04864393]) time_1000_10_bre = np.array([ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4, 4.1, 4.2, 4.3, 4.4, 4.6, 4.8, 4.9, 5, 5.1, 5.2, 5.7, 5.8, 5.9, 6.9]) hazard_1000_10_bre = np.array([ 0.01610374, 0.04853538, 0.08984849, 0.1311329, 0.168397, 0.2230488, 0.2755388, 0.3312606, 0.3668702, 0.4146558, 0.477935, 0.5290705, 0.5831775, 0.6503129, 0.7113068, 0.7830385, 0.8361717, 0.8910061, 0.9615944, 1.024011, 1.113399, 1.165349, 1.239827, 1.352902, 1.409548, 1.53197, 1.601843, 1.682158, 1.714907, 1.751564, 1.790898, 1.790898, 1.83393, 1.83393, 1.936055, 1.992303, 2.050778, 2.118776, 2.263056, 2.504999, 2.739343, 2.895514, 3.090349, 3.090349, 3.391772, 3.728142, 4.152769, 4.152769, 4.152769, 4.725957, 4.725957, 5.69653, 5.69653, 5.69653]) coef_1000_10_et_bre = np.array([ -0.410889, -0.3929442, -0.2975845, -0.1851533, -0.0918359, 0.1011997, 0.106735, 0.2899179, 0.3220672, 0.5069589]) se_1000_10_et_bre = np.array([ 0.04696754, 0.04732169, 0.04537707, 0.04605371, 0.04365232, 0.04450021, 0.04252475, 0.04482007, 0.04562374, 0.04859727]) time_1000_10_et_bre = np.array([0]) hazard_1000_10_et_bre = np.array([0]) coef_1000_10_st_bre = np.array([ -0.471015, -0.4766859, -0.3070839, -0.2091938, -0.09190845, 0.0964942, 0.1138269, 0.3307131, 0.3543551, 0.562492]) se_1000_10_st_bre = np.array([ 0.04814778, 0.04841938, 0.04572291, 0.04641227, 0.04502525, 0.04517603, 0.04203737, 0.04524356, 0.04635037, 0.04920866]) time_1000_10_st_bre = np.array([0]) hazard_1000_10_st_bre = np.array([0]) coef_1000_10_et_st_bre = np.array([ -0.4165849, -0.4073504, -0.2980959, -0.1765194, -0.09152798, 0.1013213, 0.1009838, 0.2859668, 0.3247608, 0.5044448]) se_1000_10_et_st_bre = np.array([ 0.04809818, 0.04809499, 0.0460829, 0.04679922, 0.0445294, 0.04514045, 0.04339298, 0.04580591, 0.04652447, 0.04920744]) time_1000_10_et_st_bre = np.array([0]) hazard_1000_10_et_st_bre = np.array([0]) coef_1000_10_efr = np.array([ -0.4894399, -0.4839746, -0.3227769, -0.2261293, -0.09318482, 0.09767154, 0.1173205, 0.3493732, 0.3640146, 0.5879749]) se_1000_10_efr = np.array([ 0.0474181, 0.04811855, 0.04507655, 0.04603044, 0.04440409, 0.04478202, 0.04136728, 0.04473343, 0.045768, 0.04891375]) time_1000_10_efr = np.array([ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4, 4.1, 4.2, 4.3, 4.4, 4.6, 4.8, 4.9, 5, 5.1, 5.2, 5.7, 5.8, 5.9, 6.9]) hazard_1000_10_efr = np.array([ 0.01549698, 0.04680035, 0.08682564, 0.1269429, 0.1632388, 0.2167291, 0.2682311, 0.3231316, 0.3582936, 0.4054892, 0.4681098, 0.5188697, 0.5727059, 0.639571, 0.7003012, 0.7718979, 0.825053, 0.880063, 0.950935, 1.013828, 1.103903, 1.156314, 1.231707, 1.346235, 1.40359, 1.527475, 1.598231, 1.6795, 1.712779, 1.750227, 1.790455, 1.790455, 1.834455, 1.834455, 1.938997, 1.996804, 2.056859, 2.126816, 2.275217, 2.524027, 2.76669, 2.929268, 3.13247, 3.13247, 3.448515, 3.80143, 4.249649, 4.249649, 4.249649, 4.851365, 4.851365, 5.877307, 5.877307, 5.877307]) coef_1000_10_et_efr = np.array([ -0.4373066, -0.4131901, -0.3177637, -0.1978493, -0.09679451, 0.1092037, 0.1136069, 0.3088907, 0.3442007, 0.5394121]) se_1000_10_et_efr = np.array([ 0.04716041, 0.04755342, 0.04546713, 0.04627802, 0.04376583, 0.04474868, 0.04259991, 0.04491564, 0.04589027, 0.04890847]) time_1000_10_et_efr = np.array([0]) hazard_1000_10_et_efr = np.array([0]) coef_1000_10_st_efr = np.array([ -0.4911117, -0.4960756, -0.3226152, -0.220949, -0.09478141, 0.1015735, 0.1195524, 0.3446977, 0.3695904, 0.5878576]) se_1000_10_st_efr = np.array([ 0.04833676, 0.04868554, 0.04578407, 0.04661755, 0.04518267, 0.04537135, 0.04202183, 0.04531266, 0.0464931, 0.04949831]) time_1000_10_st_efr = np.array([0]) hazard_1000_10_st_efr = np.array([0]) coef_1000_10_et_st_efr = np.array([ -0.444355, -0.4283278, -0.3198815, -0.1901781, -0.09727039, 0.1106191, 0.1092104, 0.3034778, 0.3451699, 0.5382381]) se_1000_10_et_st_efr = np.array([ 0.04830664, 0.04833619, 0.04617371, 0.04706401, 0.04472699, 0.0454208, 0.04350539, 0.04588588, 0.04675675, 0.04950987]) time_1000_10_et_st_efr = np.array([0]) hazard_1000_10_et_st_efr = np.array([0])