import numpy as np from statsmodels.tools.tools import Bunch pls5 = Bunch() pls5.smooth = Bunch() pls5.smooth.term = 'times' pls5.smooth.bs_dim = 7 pls5.smooth.dim = 1 pls5.smooth.by = 'NA' pls5.smooth.label = 's(times)' pls5.smooth.sp = 1 pls5.smooth.BD = np.array([ -0.0322305472050642, 0.0332895629742452, -0.00907144581575865, 0.00386174436551668, -0.00624916066961505, 0.0181385348730838, 0.0292384327901831, -0.0717740723184547, 0.054914261809955, -0.0158383049768667, 0.00626042823599089, -0.0103543594891998, -0.011074996356557, 0.0526128870346165, -0.0930190975208449, 0.0595200902721069, -0.0135721686724522, 0.00600098849448633, 0.00625687187895293, -0.0145166841858048, 0.0594020303618183, -0.0946831790103269, 0.0511018949689336, -0.0114519440129956, -0.00994300967116444, 0.00619931821053046, -0.0156728054209229, 0.0550549724656574, -0.0669161912708059, 0.0271416199423184, 0.0177532485636497, -0.00581101171513275, 0.00344705658575325, -0.00791532311608746, 0.0293751974079486, -0.0294748398076931 ]).reshape(6, 6, order='F') pls5.smooth.xp = np.array([ 2.4, 11.2, 17.8, 24.8, 31.2, 41, 57.6 ]) pls5.smooth.rank = 5 pls5.smooth.df = 5 pls5.smooth.null_space_dim = 0 pls5.smooth.S_scale = 0.0263073404164214 pls5.smooth.vn = 'times' pls5.smooth.first_para = 1 pls5.smooth.last_para = 5 pls5.smooth.S = np.array([ 1.63230340200229, -0.830028815742871, 0.901802118895566, -0.00398686659390206, 0.518361615576888, -0.830028815742871, 1.06825930315182, -1.16452750566645, 0.27022513792646, -0.156140353580413, 0.901802118895566, -1.16452750566645, 1.99828270457965, -1.0130803218067, 0.537502835084835, -0.00398686659390202, 0.27022513792646, -1.0130803218067, 1.00336165100886, -0.42156685405732, 0.518361615576888, -0.156140353580413, 0.537502835084835, -0.42156685405732, 0.53026887882367 ]).reshape(5, 5, order='F') pls5.coefficients = np.array([ 20.036025308233, -62.6817097954891, -51.0985219408637, 42.0072653496657, 22.0294169083686 ]) pls5.residuals = np.array([ -27.9959461270327, -29.9873153013088, -33.4871658551864, -32.1806279683964, -36.2429080803179, -42.1809749693548, -42.7967018255375, -41.6315122829302, -43.3634717352437, -43.0512160670889, -40.6362776289091, -42.0362776289091, -39.5456492135197, -37.7626842421689, -39.4270272919089, -34.3534190712615, -34.2581579025003, -25.620485822405, -9.20474188594053, -4.25666047069376, 0.973620269858165, -1.98289744771254, 5.91710255228746, 5.91710255228746, 2.01710255228746, -4.68289744771254, -11.4828974477125, 11.2258684745284, -1.09750724577815, -10.3975072457782, -31.7975072457782, -33.1975072457782, -15.9436533005046, 2.75634669949536, 5.28012541131612, -24.0198745886839, -13.6327100060003, 2.46728999399974, 10.2113015518619, -19.0886984481381, -29.9886984481382, 28.7056211892181, -46.2943788107819, -22.5562899896158, -32.2809708803244, -52.3809708803244, -38.9809708803244, 9.5618305244081, -38.5381694755919, -76.0381694755919, -54.8381694755919, -50.1747823609389, -55.4747823609389, -57.1466027401597, 4.55339725984031, -64.0315014095472, -25.5086559459592, -12.2086559459592, -66.1950864997126, -60.0191254292233, -54.3517512165439, -69.7295615244473, -37.7403864731789, -44.8180470316897, -59.986700874309, -65.3734281515862, -72.1088351546469, -60.8834427039697, -45.3341377885245, -32.0341377885245, -7.8297215083258, -23.3552855597822, -16.5552855597822, -36.3779785846358, -8.37797858463581, 6.39642948584952, 22.0623645725674, -82.6278644992308, 2.97213550076917, -44.1880620398212, -4.09724591449898, -36.9460977704119, -15.5460977704119, 18.1539022295881, 6.0922444071392, 4.22670173667689, -32.5314729126827, 26.4685270873173, 32.6407254849959, -44.0843113342156, -1.69362292204985, 27.696595904506, -41.2062580917222, -0.884830576710961, -7.58483057671096, -13.0853931943938, -45.7920300180993, -16.8154499346668, -61.2575969312418, 12.8304879487218, -77.4317921021069, -116.331792102107, 8.65836551460932, -25.5758467119592, -28.2758467119592, -95.7639644866625, -35.4639644866625, -2.21637929151667, -38.4163792915167, -36.3347820148442, -41.7779999343159, -58.240721990024, -47.6160223101961, 3.1108829637715, -38.3891170362285, 5.46970557944417, -22.2450916690901, -32.9450916690901, -6.74997284201094, -19.2369803024212, -16.7419595489538, -4.46697733958345, -1.48504457098591, -37.8385180985158, -25.7385180985158, -24.0434946415046, -11.5970529121364, -2.67189343191111, -30.2794900717192, -22.6274495550672, -9.22744955506716, -23.7435355032739, -17.2959461270327 ]) pls5.fitted_values = np.array([ 27.9959461270327, 28.6873153013088, 30.7871658551864, 32.1806279683964, 33.5429080803179, 39.4809749693548, 40.0967018255375, 40.3315122829302, 40.6634717352437, 40.3512160670889, 39.3362776289091, 39.3362776289091, 36.8456492135197, 35.0626842421689, 34.0270272919089, 31.6534190712615, 28.8581579025003, 25.620485822405, 6.50474188594053, 1.55666047069376, -0.973620269858165, -11.3171025522875, -11.3171025522875, -11.3171025522875, -11.3171025522875, -11.3171025522875, -11.3171025522875, -13.9258684745284, -21.7024927542218, -21.7024927542218, -21.7024927542218, -21.7024927542218, -24.2563466994954, -24.2563466994954, -26.7801254113161, -26.7801254113161, -29.2672899939997, -29.2672899939997, -31.7113015518619, -31.7113015518619, -31.7113015518619, -34.1056211892181, -34.1056211892181, -36.4437100103842, -38.7190291196756, -38.7190291196756, -38.7190291196756, -47.0618305244081, -47.0618305244081, -47.0618305244081, -47.0618305244081, -48.9252176390611, -48.9252176390611, -55.3533972598403, -55.3533972598403, -59.0684985904528, -60.0913440540408, -60.0913440540408, -61.0049135002874, -63.0808745707767, -63.5482487834561, -64.2704384755527, -64.1596135268211, -63.5819529683103, -63.113299125691, -57.7265718484138, -56.3911648453531, -51.6165572960303, -49.7658622114755, -49.7658622114755, -45.6702784916742, -41.0447144402178, -41.0447144402178, -35.9220214153642, -35.9220214153642, -33.1964294858495, -27.4623645725674, -24.4721355007692, -24.4721355007692, -21.4119379601788, -11.902754085501, -8.65390222958812, -8.65390222958812, -8.65390222958812, -2.0922444071392, 7.77329826332311, 11.0314729126827, 11.0314729126827, 14.2592745150041, 26.6843113342156, 37.8936229220499, 47.303404095494, 49.3062580917222, 55.784830576711, 55.784830576711, 59.9853931943938, 61.7920300180993, 62.4154499346668, 62.5575969312418, 62.1695120512782, 61.4317921021069, 61.4317921021069, 60.9416344853907, 60.3758467119592, 60.3758467119592, 58.2639644866625, 58.2639644866625, 49.1163792915167, 49.1163792915167, 41.7347820148442, 40.4779999343159, 36.740721990024, 34.3160223101961, 27.6891170362285, 27.6891170362285, 23.9302944205558, 22.2450916690901, 22.2450916690901, 21.4499728420109, 17.9369803024212, 16.7419595489538, 15.1669773395835, 12.1850445709859, 11.0385180985158, 11.0385180985158, 10.7434946415046, 11.5970529121364, 13.3718934319111, 15.5794900717192, 19.9274495550672, 19.9274495550672, 21.0435355032739, 27.9959461270327 ]) pls5.linear_predictors = np.array([ 27.9959461270327, 28.6873153013088, 30.7871658551864, 32.1806279683964, 33.5429080803179, 39.4809749693548, 40.0967018255375, 40.3315122829302, 40.6634717352437, 40.3512160670889, 39.3362776289091, 39.3362776289091, 36.8456492135197, 35.0626842421689, 34.0270272919089, 31.6534190712615, 28.8581579025003, 25.620485822405, 6.50474188594053, 1.55666047069376, -0.973620269858165, -11.3171025522875, -11.3171025522875, -11.3171025522875, -11.3171025522875, -11.3171025522875, -11.3171025522875, -13.9258684745284, -21.7024927542218, -21.7024927542218, -21.7024927542218, -21.7024927542218, -24.2563466994954, -24.2563466994954, -26.7801254113161, -26.7801254113161, -29.2672899939997, -29.2672899939997, -31.7113015518619, -31.7113015518619, -31.7113015518619, -34.1056211892181, -34.1056211892181, -36.4437100103842, -38.7190291196756, -38.7190291196756, -38.7190291196756, -47.0618305244081, -47.0618305244081, -47.0618305244081, -47.0618305244081, -48.9252176390611, -48.9252176390611, -55.3533972598403, -55.3533972598403, -59.0684985904528, -60.0913440540408, -60.0913440540408, -61.0049135002874, -63.0808745707767, -63.5482487834561, -64.2704384755527, -64.1596135268211, -63.5819529683103, -63.113299125691, -57.7265718484138, -56.3911648453531, -51.6165572960303, -49.7658622114755, -49.7658622114755, -45.6702784916742, -41.0447144402178, -41.0447144402178, -35.9220214153642, -35.9220214153642, -33.1964294858495, -27.4623645725674, -24.4721355007692, -24.4721355007692, -21.4119379601788, -11.902754085501, -8.65390222958812, -8.65390222958812, -8.65390222958812, -2.0922444071392, 7.77329826332311, 11.0314729126827, 11.0314729126827, 14.2592745150041, 26.6843113342156, 37.8936229220499, 47.303404095494, 49.3062580917222, 55.784830576711, 55.784830576711, 59.9853931943938, 61.7920300180993, 62.4154499346668, 62.5575969312418, 62.1695120512782, 61.4317921021069, 61.4317921021069, 60.9416344853907, 60.3758467119592, 60.3758467119592, 58.2639644866625, 58.2639644866625, 49.1163792915167, 49.1163792915167, 41.7347820148442, 40.4779999343159, 36.740721990024, 34.3160223101961, 27.6891170362285, 27.6891170362285, 23.9302944205558, 22.2450916690901, 22.2450916690901, 21.4499728420109, 17.9369803024212, 16.7419595489538, 15.1669773395835, 12.1850445709859, 11.0385180985158, 11.0385180985158, 10.7434946415046, 11.5970529121364, 13.3718934319111, 15.5794900717192, 19.9274495550672, 19.9274495550672, 21.0435355032739, 27.9959461270327 ]) pls5.deviance = 180391.104352065 pls5.null_deviance = 395017.34 pls5.iter = 1 pls5.weights = np.array([ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]) pls5.prior_weights = np.array([ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]) pls5.df_null = 133 pls5.y = np.array([ 0, -1.3, -2.7, 0, -2.7, -2.7, -2.7, -1.3, -2.7, -2.7, -1.3, -2.7, -2.7, -2.7, -5.4, -2.7, -5.4, 0, -2.7, -2.7, 0, -13.3, -5.4, -5.4, -9.3, -16, -22.8, -2.7, -22.8, -32.1, -53.5, -54.9, -40.2, -21.5, -21.5, -50.8, -42.9, -26.8, -21.5, -50.8, -61.7, -5.4, -80.4, -59, -71, -91.1, -77.7, -37.5, -85.6, -123.1, -101.9, -99.1, -104.4, -112.5, -50.8, -123.1, -85.6, -72.3, -127.2, -123.1, -117.9, -134, -101.9, -108.4, -123.1, -123.1, -128.5, -112.5, -95.1, -81.8, -53.5, -64.4, -57.6, -72.3, -44.3, -26.8, -5.4, -107.1, -21.5, -65.6, -16, -45.6, -24.2, 9.5, 4, 12, -21.5, 37.5, 46.9, -17.4, 36.2, 75, 8.1, 54.9, 48.2, 46.9, 16, 45.6, 1.3, 75, -16, -54.9, 69.6, 34.8, 32.1, -37.5, 22.8, 46.9, 10.7, 5.4, -1.3, -21.5, -13.3, 30.8, -10.7, 29.4, 0, -10.7, 14.7, -1.3, 0, 10.7, 10.7, -26.8, -14.7, -13.3, 0, 10.7, -14.7, -2.7, 10.7, -2.7, 10.7 ]) pls5.sig2 = 1405.72589061551 pls5.edf = np.array([ 0.893973446261888, 0.964904681210716, 0.910197466057859, 0.951689945168155, 0.953288730104318 ]) pls5.edf1 = np.array([ 0.981711944544246, 0.996264240571943, 0.982938111847731, 0.994003453703398, 0.993140527833467 ]) pls5.hat = np.array([ 0.0648926406262456, 0.0631966900584761, 0.0577531173208777, 0.054095436609033, 0.050646403216983, 0.0414030519922767, 0.0419393714799485, 0.0424407004729246, 0.0466884028411439, 0.0488322930145467, 0.0519315914083648, 0.0519315914083648, 0.0547480920171652, 0.0551378158184696, 0.055000499312335, 0.0539763060097797, 0.0518779851195461, 0.0486811707669425, 0.0278002106937094, 0.0236664981666194, 0.0218678587405494, 0.0168702076728429, 0.0168702076728429, 0.0168702076728429, 0.0168702076728429, 0.0168702076728429, 0.0168702076728429, 0.0162099114442375, 0.0155969292014215, 0.0155969292014215, 0.0155969292014215, 0.0155969292014215, 0.0158045134149012, 0.0158045134149012, 0.0161857205884225, 0.0161857205884225, 0.016715730291764, 0.016715730291764, 0.0173667434517008, 0.0173667434517008, 0.0173667434517008, 0.0181085269560167, 0.0181085269560167, 0.01890902644145, 0.0197350472655703, 0.0197350472655703, 0.0197350472655703, 0.0226344032048916, 0.0226344032048916, 0.0226344032048916, 0.0226344032048916, 0.0231064605220144, 0.0231064605220144, 0.0236010474476975, 0.0236010474476975, 0.0229362836765587, 0.0226341946832984, 0.0226341946832984, 0.022331993508414, 0.0216507968090011, 0.0215654072946402, 0.022307353392817, 0.0227976525538385, 0.0241408042749582, 0.0249779152827976, 0.0312910194327127, 0.0323419434967748, 0.0349400511510723, 0.0355272516690269, 0.0355272516690269, 0.0361324218251331, 0.0358606650811796, 0.0358606650811796, 0.0347553939582878, 0.0347553939582878, 0.0339600300427633, 0.0320525342614235, 0.0310119683533198, 0.0310119683533198, 0.0299615237560085, 0.0270931967217139, 0.0263353031813311, 0.0263353031813311, 0.0263353031813311, 0.0252733837531764, 0.0250806228807981, 0.0254302543661375, 0.0254302543661375, 0.0259902742331093, 0.0301636177707758, 0.0364915828338694, 0.0429804641044596, 0.044338813283762, 0.0478470725808693, 0.0478470725808693, 0.0481431076555552, 0.0465422084456883, 0.0448254504760713, 0.0416389240869886, 0.0393309802887003, 0.0370523590709184, 0.0370523590709184, 0.0359684768956268, 0.0349434963301099, 0.0349434963301099, 0.0323665679080144, 0.0323665679080144, 0.0312847023217674, 0.0312847023217674, 0.0364198732168461, 0.037600534161656, 0.0414170598382483, 0.0440177673095073, 0.0505139848525673, 0.0505139848525673, 0.0529266400408666, 0.0535167237447347, 0.0535167237447347, 0.0536669701648488, 0.0531784414477218, 0.0525292698619672, 0.0512621693606931, 0.0477153739370841, 0.04661692338803, 0.04661692338803, 0.0475945362276516, 0.054093097958197, 0.0620671413133406, 0.0689518115696408, 0.0748549607794503, 0.0748549607794503, 0.0749105486240515, 0.0648926406262456 ]) pls5.R = np.array([ 0.419812589435278, -0.402017675646454, 0.488999441150794, 3.98552866496736, 0, 4.86284047828201, 0, 0, 0, 0, -0.642048459345638, 4.51912765154044, 0, 0, 0, -0.287016774143419, 0.0590176744049711, 4.48152596952222, 0, 0, -0.881192283208667, -0.721748467517155, 0.141530733755857, -0.975518963486962, 3.68675964176163 ]).reshape(5, 5, order='F') pls5.sp = None pls5.nsdf = 0 pls5.Ve = np.array([ 72.3041357618152, 1.66913532916499, 0.502555357170923, -6.08025176950849, 12.003156582929, 1.66913532916499, 60.8548565958852, 15.0519202741408, 3.17016170151452, 18.3724060596875, 0.502555357170922, 15.0519202741408, 59.9017269122546, 5.31826437849191, 9.33171431050043, -6.08025176950849, 3.17016170151452, 5.31826437849191, 64.066598433814, 0.697025995194202, 12.003156582929, 18.3724060596875, 9.33171431050043, 0.697025995194202, 90.4171907271362 ]).reshape(5, 5, order='F') pls5.Vp = np.array([ 82.3434717904795, -0.200148537531833, 5.72440590880333, -8.16239095841476, 17.8905796109278, -0.200148537531833, 62.7551455396847, 13.6184531397824, 3.34367783462779, 18.6689815079065, 5.72440590880333, 13.6184531397824, 65.7343350358227, 1.64716527529062, 13.483565756752, -8.16239095841476, 3.34367783462779, 1.64716527529062, 67.4465665922581, -2.30098498787076, 17.8905796109278, 18.6689815079065, 13.483565756752, -2.30098498787076, 96.3416133118078 ]).reshape(5, 5, order='F') pls5.rV = np.array([ -0.0392296145497642, -0.148679582608057, 0.0918117471236096, 0.00695938411477142, 0.0468995189236096, -0.00179994351487469, 0.056193728117226, 0.144936306168724, -0.104973822562831, -0.0915159363023183, -0.112299188421777, 0.00531211090361532, -0.0656150416863762, -0.150002132732638, 0.073614883684395, 0.168793284880097, -0.101999375560153, -0.0661656482881794, -0.11825783453015, -0.035090842164745, 0.126224824188388, 0.0945889794789336, 0.0929660567115005, -0.020649293225403, 0.226516853583393 ]).reshape(5, 5, order='F') pls5.gcv_ubre = 1456.9270648002 pls5.aic = 1348.0527067527 pls5.rank = 5 pls5.gcv_ubre_dev = 1456.92706480021 pls5.method = 'GCV' pls5.full_sp = 1 pls5.cmX = np.array([ 0, 0, 0, 0, 0 ]) pls5.model = np.array([ 0, -1.3, -2.7, 0, -2.7, -2.7, -2.7, -1.3, -2.7, -2.7, -1.3, -2.7, -2.7, -2.7, -5.4, -2.7, -5.4, 0, -2.7, -2.7, 0, -13.3, -5.4, -5.4, -9.3, -16, -22.8, -2.7, -22.8, -32.1, -53.5, -54.9, -40.2, -21.5, -21.5, -50.8, -42.9, -26.8, -21.5, -50.8, -61.7, -5.4, -80.4, -59, -71, -91.1, -77.7, -37.5, -85.6, -123.1, -101.9, -99.1, -104.4, -112.5, -50.8, -123.1, -85.6, -72.3, -127.2, -123.1, -117.9, -134, -101.9, -108.4, -123.1, -123.1, -128.5, -112.5, -95.1, -81.8, -53.5, -64.4, -57.6, -72.3, -44.3, -26.8, -5.4, -107.1, -21.5, -65.6, -16, -45.6, -24.2, 9.5, 4, 12, -21.5, 37.5, 46.9, -17.4, 36.2, 75, 8.1, 54.9, 48.2, 46.9, 16, 45.6, 1.3, 75, -16, -54.9, 69.6, 34.8, 32.1, -37.5, 22.8, 46.9, 10.7, 5.4, -1.3, -21.5, -13.3, 30.8, -10.7, 29.4, 0, -10.7, 14.7, -1.3, 0, 10.7, 10.7, -26.8, -14.7, -13.3, 0, 10.7, -14.7, -2.7, 10.7, -2.7, 10.7, 2.4, 2.6, 3.2, 3.6, 4, 6.2, 6.6, 6.8, 7.8, 8.2, 8.8, 8.8, 9.6, 10, 10.2, 10.6, 11, 11.4, 13.2, 13.6, 13.8, 14.6, 14.6, 14.6, 14.6, 14.6, 14.6, 14.8, 15.4, 15.4, 15.4, 15.4, 15.6, 15.6, 15.8, 15.8, 16, 16, 16.2, 16.2, 16.2, 16.4, 16.4, 16.6, 16.8, 16.8, 16.8, 17.6, 17.6, 17.6, 17.6, 17.8, 17.8, 18.6, 18.6, 19.2, 19.4, 19.4, 19.6, 20.2, 20.4, 21.2, 21.4, 21.8, 22, 23.2, 23.4, 24, 24.2, 24.2, 24.6, 25, 25, 25.4, 25.4, 25.6, 26, 26.2, 26.2, 26.4, 27, 27.2, 27.2, 27.2, 27.6, 28.2, 28.4, 28.4, 28.6, 29.4, 30.2, 31, 31.2, 32, 32, 32.8, 33.4, 33.8, 34.4, 34.8, 35.2, 35.2, 35.4, 35.6, 35.6, 36.2, 36.2, 38, 38, 39.2, 39.4, 40, 40.4, 41.6, 41.6, 42.4, 42.8, 42.8, 43, 44, 44.4, 45, 46.6, 47.8, 47.8, 48.8, 50.6, 52, 53.2, 55, 55, 55.4, 57.6 ]).reshape(133, 2, order='F') pls5.assign = None pls5.offset = np.array([ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]) pls5.df_residual = 128.325945731197 pls5.min_edf = 0 pls5.optimizer = 'magic' pls5.p_coeff = None pls5.se = np.array([ 9.07433037697435, 7.92181453580458, 8.10767136950078, 8.21258586513761, 9.81537637137811 ]) pls5.p_t = None pls5.p_pv = None pls5.residual_df = 128.325945731197 pls5.m = 1 pls5.chi_sq = 147.917821150898 pls5.s_pv = 8.54761661656479e-25 pls5.scale = 1405.72589061551 pls5.r_sq = 0.687640791604775 pls5.n = 133 pls5.dev_expl = 0.543333706940396 pls5.edf = 4.67405426880294 pls5.dispersion = 1405.72589061551 pls5.pTerms_pv = None pls5.pTerms_chi_sq = None pls5.pTerms_df = None pls5.cov_unscaled = np.array([ 0.0585771894365725, -0.000142380914279238, 0.00407220635759709, -0.0058065309979037, 0.0127269332736656, -0.000142380914279238, 0.0446425195399984, 0.00968784400337069, 0.00237861296924945, 0.0132806698891575, 0.00407220635759709, 0.00968784400337069, 0.0467618441651097, 0.00117175424190942, 0.00959188832386668, -0.0058065309979037, 0.00237861296924945, 0.00117175424190942, 0.0479798850135184, -0.00163686605136315, 0.0127269332736656, 0.0132806698891575, 0.00959188832386668, -0.00163686605136315, 0.0685351347335742 ]).reshape(5, 5, order='F') pls5.cov_scaled = np.array([ 82.3434717904795, -0.200148537531833, 5.72440590880333, -8.16239095841476, 17.8905796109278, -0.200148537531833, 62.7551455396847, 13.6184531397824, 3.34367783462779, 18.6689815079065, 5.72440590880333, 13.6184531397824, 65.7343350358227, 1.64716527529062, 13.483565756752, -8.16239095841476, 3.34367783462779, 1.64716527529062, 67.4465665922581, -2.30098498787076, 17.8905796109278, 18.6689815079065, 13.483565756752, -2.30098498787076, 96.3416133118078 ]).reshape(5, 5, order='F') pls5.s_table = np.array([ 4.67405426880294, 5, 29.5835642301796, 8.54761661656479e-25 ]).reshape(1, 4, order='F') pls5.method = 'GCV' pls5.sp_criterion = 1456.9270648002 pls5.rank = 5 pls5.np = 5 pls5.params = np.array([ 20.036025308233, -62.6817097954891, -51.0985219408637, 42.0072653496657, 22.0294169083686 ])