'''Non-linear least squares Author: Josef Perktold based on scipy.optimize.curve_fit ''' import numpy as np from scipy import optimize from statsmodels.base.model import Model class Results(object): '''just a dummy placeholder for now most results from RegressionResults can be used here ''' pass ##def getjaccov(retval, n): ## '''calculate something and raw covariance matrix from return of optimize.leastsq ## ## I cannot figure out how to recover the Jacobian, or whether it is even ## possible ## ## this is a partial copy of scipy.optimize.leastsq ## ''' ## info = retval[-1] ## #n = len(x0) #nparams, where do I get this ## cov_x = None ## if info in [1,2,3,4]: ## from numpy.dual import inv ## from numpy.linalg import LinAlgError ## perm = np.take(np.eye(n), retval[1]['ipvt']-1,0) ## r = np.triu(np.transpose(retval[1]['fjac'])[:n,:]) ## R = np.dot(r, perm) ## try: ## cov_x = inv(np.dot(np.transpose(R),R)) ## except LinAlgError: ## print 'cov_x not available' ## pass ## return r, R, cov_x ## ##def _general_function(params, xdata, ydata, function): ## return function(xdata, *params) - ydata ## ##def _weighted_general_function(params, xdata, ydata, function, weights): ## return weights * (function(xdata, *params) - ydata) ## class NonlinearLS(Model): #or subclass a model r'''Base class for estimation of a non-linear model with least squares This class is supposed to be subclassed, and the subclass has to provide a method `_predict` that defines the non-linear function `f(params) that is predicting the endogenous variable. The model is assumed to be :math: y = f(params) + error and the estimator minimizes the sum of squares of the estimated error. :math: min_parmas \sum (y - f(params))**2 f has to return the prediction for each observation. Exogenous or explanatory variables should be accessed as attributes of the class instance, and can be given as arguments when the instance is created. Warning: Weights are not correctly handled yet in the results statistics, but included when estimating the parameters. similar to scipy.optimize.curve_fit API difference: params are array_like not split up, need n_params information includes now weights similar to curve_fit no general sigma yet (OLS and WLS, but no GLS) This is currently holding on to intermediate results that are not necessary but useful for testing. Fit returns and instance of RegressionResult, in contrast to the linear model, results in this case are based on a local approximation, essentially y = f(X, params) is replaced by y = grad * params where grad is the Gradient or Jacobian with the shape (nobs, nparams). See for example Greene Examples -------- class Myfunc(NonlinearLS): def _predict(self, params): x = self.exog a, b, c = params return a*np.exp(-b*x) + c Ff we have data (y, x), we can create an instance and fit it with mymod = Myfunc(y, x) myres = mymod.fit(nparams=3) and use the non-linear regression results, for example myres.params myres.bse myres.tvalues ''' #NOTE: This needs to call super for data checking def __init__(self, endog=None, exog=None, weights=None, sigma=None, missing='none'): self.endog = endog self.exog = exog if sigma is not None: sigma = np.asarray(sigma) if sigma.ndim < 2: self.sigma = sigma self.weights = 1./sigma else: raise ValueError('correlated errors are not handled yet') else: self.weights = None def predict(self, exog, params=None): #copied from GLS, Model has different signature return self._predict(params) def _predict(self, params): pass def start_value(self): return None def geterrors(self, params, weights=None): if weights is None: if self.weights is None: return self.endog - self._predict(params) else: weights = self.weights return weights * (self.endog - self._predict(params)) def errorsumsquares(self, params): return (self.geterrors(params)**2).sum() def fit(self, start_value=None, nparams=None, **kw): #if hasattr(self, 'start_value'): #I added start_value even if it's empty, not sure about it #but it makes a visible placeholder if start_value is not None: p0 = start_value else: #nesting so that start_value is only calculated if it is needed p0 = self.start_value() if p0 is not None: pass elif nparams is not None: p0 = 0.1 * np.ones(nparams) else: raise ValueError('need information about start values for' + 'optimization') func = self.geterrors res = optimize.leastsq(func, p0, full_output=1, **kw) (popt, pcov, infodict, errmsg, ier) = res if ier not in [1,2,3,4]: msg = "Optimal parameters not found: " + errmsg raise RuntimeError(msg) err = infodict['fvec'] ydata = self.endog if (len(ydata) > len(p0)) and pcov is not None: #this can use the returned errors instead of recalculating s_sq = (err**2).sum()/(len(ydata)-len(p0)) pcov = pcov * s_sq else: pcov = None self.df_resid = len(ydata)-len(p0) self.df_model = len(p0) fitres = Results() fitres.params = popt fitres.pcov = pcov fitres.rawres = res self.wendog = self.endog #add weights self.wexog = self.jac_predict(popt) pinv_wexog = np.linalg.pinv(self.wexog) self.normalized_cov_params = np.dot(pinv_wexog, np.transpose(pinv_wexog)) #TODO: check effect of `weights` on result statistics #I think they are correctly included in cov_params #maybe not anymore, I'm not using pcov of leastsq #direct calculation with jac_predict misses the weights ## if not weights is None ## fitres.wexogw = self.weights * self.jacpredict(popt) from statsmodels.regression import RegressionResults results = RegressionResults beta = popt lfit = RegressionResults(self, beta, normalized_cov_params=self.normalized_cov_params) lfit.fitres = fitres #mainly for testing self._results = lfit return lfit def fit_minimal(self, start_value, **kwargs): '''minimal fitting with no extra calculations''' func = self.geterrors res = optimize.leastsq(func, start_value, full_output=0, **kwargs) return res def fit_random(self, ntries=10, rvs_generator=None, nparams=None): '''fit with random starting values this could be replaced with a global fitter ''' if nparams is None: nparams = self.nparams if rvs_generator is None: rvs = np.random.uniform(low=-10, high=10, size=(ntries, nparams)) else: rvs = rvs_generator(size=(ntries, nparams)) results = np.array([np.r_[self.fit_minimal(rv), rv] for rv in rvs]) #selct best results and check how many solutions are within 1e-6 of best #not sure what leastsq returns return results def jac_predict(self, params): '''jacobian of prediction function using complex step derivative This assumes that the predict function does not use complex variable but is designed to do so. ''' from statsmodels.tools.numdiff import approx_fprime_cs jaccs_err = approx_fprime_cs(params, self._predict) return jaccs_err class Myfunc(NonlinearLS): #predict model.Model has a different signature ## def predict(self, params, exog=None): ## if not exog is None: ## x = exog ## else: ## x = self.exog ## a, b, c = params ## return a*np.exp(-b*x) + c def _predict(self, params): x = self.exog a, b, c = params return a*np.exp(-b*x) + c if __name__ == '__main__': def func0(x, a, b, c): return a*np.exp(-b*x) + c def func(params, x): a, b, c = params return a*np.exp(-b*x) + c def error(params, x, y): return y - func(params, x) def error2(params, x, y): return (y - func(params, x))**2 x = np.linspace(0,4,50) params = np.array([2.5, 1.3, 0.5]) y0 = func(params, x) y = y0 + 0.2*np.random.normal(size=len(x)) res = optimize.leastsq(error, params, args=(x, y), full_output=True) ## r, R, c = getjaccov(res[1:], 3) mod = Myfunc(y, x) resmy = mod.fit(nparams=3) cf_params, cf_pcov = optimize.curve_fit(func0, x, y) cf_bse = np.sqrt(np.diag(cf_pcov)) print(res[0]) print(cf_params) print(resmy.params) print(cf_bse) print(resmy.bse)