import numpy as np rslt_0 = np.array([ 100, 2, 0, 38.51677, -0.0002828592, -0.01440669]) rslt_1 = np.array([ 100, 2, 0, 5.991962, -0.00144282, -0.08156386]) rslt_2 = np.array([ 100, 2, 0, 0.9321552, -0.003400212, -0.2968083]) rslt_3 = np.array([ 100, 2, 0.5, 0.2352493, 0, -0.4099712]) rslt_4 = np.array([ 100, 2, 0.5, 0.07703354, 0, -0.5185569]) rslt_5 = np.array([ 100, 2, 0.5, 0.02522501, 0, -0.5578565]) rslt_6 = np.array([ 100, 2, 1, 0.1416793, 0, -0.4346288]) rslt_7 = np.array([ 100, 2, 1, 0.04639359, 0, -0.530877]) rslt_8 = np.array([ 100, 2, 1, 0.01829859, 0, -0.5592558]) rslt_9 = np.array([ 100, 3, 0, 38.51677, -0.0002931891, -0.01441805, 0.01019003]) rslt_10 = np.array([ 100, 3, 0, 5.991962, -0.00177573, -0.08193033, 0.05812813]) rslt_11 = np.array([ 100, 3, 0, 0.9321552, -0.007886374, -0.3017527, 0.2167204]) rslt_12 = np.array([ 100, 3, 0.5, 0.2143504, 0, -0.4350311, 0.2878706]) rslt_13 = np.array([ 100, 3, 0.5, 0.07019009, 0, -0.540186, 0.3830582]) rslt_14 = np.array([ 100, 3, 0.5, 0.02298409, -0.007207869, -0.5779581, 0.417658]) rslt_15 = np.array([ 100, 3, 1, 0.1176247, 0, -0.4728138, 0.3103276]) rslt_16 = np.array([ 100, 3, 1, 0.03851677, 0, -0.5564642, 0.393978]) rslt_17 = np.array([ 100, 3, 1, 0.01384221, -0.004948496, -0.5824816, 0.4202673]) rslt_18 = np.array([ 100, 5, 0, 38.51677, -0.0002957436, -0.01439344, 0.01022347, -0.001361073, 0.01156754]) rslt_19 = np.array([ 100, 5, 0, 5.991962, -0.001844459, -0.08115691, 0.05920275, -0.006436703, 0.06552873]) rslt_20 = np.array([ 100, 5, 0, 0.9321552, -0.008226096, -0.2921193, 0.2311589, -0.008479325, 0.2404427]) rslt_21 = np.array([ 100, 5, 0.5, 0.2143504, 0, -0.4132961, 0.3222149, 0, 0.3262246]) rslt_22 = np.array([ 100, 5, 0.5, 0.0639546, 0, -0.5145012, 0.4359585, 0, 0.4294001]) rslt_23 = np.array([ 100, 5, 0.5, 0.02094225, -0.00787628, -0.5466386, 0.4728884, 0.0106367, 0.4627422]) rslt_24 = np.array([ 100, 5, 1, 0.1176247, 0, -0.4469856, 0.3513112, 0, 0.3519996]) rslt_25 = np.array([ 100, 5, 1, 0.03851677, 0, -0.5243974, 0.4448608, 0, 0.4370223]) rslt_26 = np.array([ 100, 5, 1, 0.01261251, -0.00600524, -0.5501652, 0.4761259, 0.009292623, 0.4655236]) rslt_27 = np.array([ 200, 2, 0, 37.37243, -0.0006197982, -0.01442844]) rslt_28 = np.array([ 200, 2, 0, 5.813939, -0.002965157, -0.0813082]) rslt_29 = np.array([ 200, 2, 0, 0.9044607, -0.0046755, -0.2916905]) rslt_30 = np.array([ 200, 2, 0.5, 0.207982, 0, -0.4102587]) rslt_31 = np.array([ 200, 2, 0.5, 0.06810473, 0, -0.5061677]) rslt_32 = np.array([ 200, 2, 0.5, 0.02230123, 0, -0.5404787]) rslt_33 = np.array([ 200, 2, 1, 0.11413, 0, -0.443054]) rslt_34 = np.array([ 200, 2, 1, 0.03737243, 0, -0.5201972]) rslt_35 = np.array([ 200, 2, 1, 0.01343095, 0, -0.544259]) rslt_36 = np.array([ 200, 3, 0, 37.37243, -0.0006182692, -0.01444479, 0.01107838]) rslt_37 = np.array([ 200, 3, 0, 5.813939, -0.002912734, -0.08183274, 0.06300276]) rslt_38 = np.array([ 200, 3, 0, 0.9044607, -0.003838731, -0.298655, 0.2325274]) rslt_39 = np.array([ 200, 3, 0.5, 0.207982, 0, -0.426489, 0.3142956]) rslt_40 = np.array([ 200, 3, 0.5, 0.06810473, 0, -0.5287444, 0.4093069]) rslt_41 = np.array([ 200, 3, 0.5, 0.02230123, 0, -0.5654985, 0.4434813]) rslt_42 = np.array([ 200, 3, 1, 0.1252575, 0, -0.450539, 0.3272248]) rslt_43 = np.array([ 200, 3, 1, 0.04101619, 0, -0.540326, 0.4170119]) rslt_44 = np.array([ 200, 3, 1, 0.01343095, 0, -0.5697273, 0.4464131]) rslt_45 = np.array([ 200, 5, 0, 37.37243, -0.0006213086, -0.01441334, 0.01110832, -0.00159415, 0.01237059]) rslt_46 = np.array([ 200, 5, 0, 5.813939, -0.003007826, -0.08084357, 0.06395108, -0.008286656, 0.06957285]) rslt_47 = np.array([ 200, 5, 0, 0.9044607, -0.004970054, -0.2862855, 0.2446989, -0.02121838, 0.2488685]) rslt_48 = np.array([ 200, 5, 0.5, 0.207982, 0, -0.398901, 0.3436805, 0, 0.3354236]) rslt_49 = np.array([ 200, 5, 0.5, 0.06810473, 0, -0.4912754, 0.4492343, 0, 0.4280285]) rslt_50 = np.array([ 200, 5, 0.5, 0.02230123, 0, -0.5240797, 0.4869532, -0.007872715, 0.4611676]) rslt_51 = np.array([ 200, 5, 1, 0.11413, 0, -0.4298238, 0.3738058, 0, 0.3604706]) rslt_52 = np.array([ 200, 5, 1, 0.03737243, 0, -0.5044899, 0.4632316, 0, 0.4395307]) rslt_53 = np.array([ 200, 5, 1, 0.01343095, 0, -0.5276608, 0.4907892, -0.005343287, 0.4641237]) rslt_54 = np.array([ 300, 2, 0, 34.28346, -0.0003952878, -0.01440603]) rslt_55 = np.array([ 300, 2, 0, 5.333396, -0.001501322, -0.08029644]) rslt_56 = np.array([ 300, 2, 0, 0.8297037, 0.002123792, -0.2786158]) rslt_57 = np.array([ 300, 2, 0.5, 0.1907915, 0, -0.3787717]) rslt_58 = np.array([ 300, 2, 0.5, 0.06247562, 0, -0.4648646]) rslt_59 = np.array([ 300, 2, 0.5, 0.02045795, 0.008282189, -0.4960003]) rslt_60 = np.array([ 300, 2, 1, 0.1046967, 0, -0.4057543]) rslt_61 = np.array([ 300, 2, 1, 0.03428346, 0, -0.476403]) rslt_62 = np.array([ 300, 2, 1, 0.01232084, 0.006463487, -0.4988773]) rslt_63 = np.array([ 300, 3, 0, 34.28346, -0.000389794, -0.01441521, 0.01276503]) rslt_64 = np.array([ 300, 3, 0, 5.333396, -0.001327446, -0.08058424, 0.07142295]) rslt_65 = np.array([ 300, 3, 0, 0.8297037, 0.004333533, -0.2821765, 0.2505531]) rslt_66 = np.array([ 300, 3, 0.5, 0.2093935, 0, -0.3745606, 0.3227598]) rslt_67 = np.array([ 300, 3, 0.5, 0.06856692, 0, -0.4707627, 0.4155033]) rslt_68 = np.array([ 300, 3, 0.5, 0.02045795, 0.01586083, -0.5078635, 0.4505092]) rslt_69 = np.array([ 300, 3, 1, 0.1149045, 0, -0.4043541, 0.347238]) rslt_70 = np.array([ 300, 3, 1, 0.03762605, 0, -0.483917, 0.4268009]) rslt_71 = np.array([ 300, 3, 1, 0.01232084, 0.01417268, -0.5109371, 0.4530943]) rslt_72 = np.array([ 300, 5, 0, 34.28346, -0.0003887545, -0.01441065, 0.01279253, -0.001336729, 0.01332977]) rslt_73 = np.array([ 300, 5, 0, 5.333396, -0.001294265, -0.08044256, 0.07228947, -0.006888477, 0.07488032]) rslt_74 = np.array([ 300, 5, 0, 0.8297037, 0.00476926, -0.2804704, 0.2614478, -0.01761104, 0.2661808]) rslt_75 = np.array([ 300, 5, 0.5, 0.2093935, 0, -0.3705814, 0.347887, 0, 0.351998]) rslt_76 = np.array([ 300, 5, 0.5, 0.06856692, 0, -0.465371, 0.449883, 0, 0.4508697]) rslt_77 = np.array([ 300, 5, 0.5, 0.02045795, 0.01744528, -0.5021737, 0.4881574, -0.007930221, 0.4878982]) rslt_78 = np.array([ 300, 5, 1, 0.1149045, 0, -0.3996701, 0.3772643, 0, 0.3807041]) rslt_79 = np.array([ 300, 5, 1, 0.03762605, 0, -0.4782089, 0.4633918, 0, 0.4639368]) rslt_80 = np.array([ 300, 5, 1, 0.01232084, 0.01578941, -0.5051176, 0.4915133, -0.005703398, 0.4910846])