import numpy as np coef_ml_drf_0 = np.array([-0.9887517]) vcov_ml_drf_0 = np.array([0.001317148]).reshape(1, 1, order='F') cov_re_ml_drf_0 = np.array([0.2522485]).reshape(1, 1, order='F') scale_ml_drf_0 = np.array([0.2718486]) loglike_ml_drf_0 = np.array([-240.1254]) ranef_mean_ml_drf_0 = np.array([0.04977167]) ranef_condvar_ml_drf_0 = np.array([0.130841]) coef_reml_drf_0 = np.array([-0.9887533]) vcov_reml_drf_0 = np.array([0.001323559]).reshape(1, 1, order='F') cov_re_reml_drf_0 = np.array([0.2524129]).reshape(1, 1, order='F') scale_reml_drf_0 = np.array([0.2733467]) loglike_reml_drf_0 = np.array([-242.5214]) ranef_mean_reml_drf_0 = np.array([0.04964696]) ranef_condvar_reml_drf_0 = np.array([0.1312315]) coef_ml_drf_1 = np.array([-0.9115929]) vcov_ml_drf_1 = np.array([0.01340632]).reshape(1, 1, order='F') cov_re_ml_drf_1 = np.array([0]).reshape(1, 1, order='F') scale_ml_drf_1 = np.array([4.050921]) loglike_ml_drf_1 = np.array([-538.0763]) ranef_mean_ml_drf_1 = np.array([0]) ranef_condvar_ml_drf_1 = np.array([0]) coef_reml_drf_1 = np.array([-0.9115929]) vcov_reml_drf_1 = np.array([0.01345931]).reshape(1, 1, order='F') cov_re_reml_drf_1 = np.array([2.839777e-14]).reshape(1, 1, order='F') scale_reml_drf_1 = np.array([4.066932]) loglike_reml_drf_1 = np.array([-539.3124]) ranef_mean_reml_drf_1 = np.array([2.424384e-14]) ranef_condvar_reml_drf_1 = np.array([2.839777e-14]) coef_ml_drf_2 = np.array([-1.012044, 0.9789052]) vcov_ml_drf_2 = np.array([ 0.00117849, 1.458744e-05, 1.458744e-05, 0.001054926]).reshape(2, 2, order='F') cov_re_ml_drf_2 = np.array([0.1596058]).reshape(1, 1, order='F') scale_ml_drf_2 = np.array([0.2129146]) loglike_ml_drf_2 = np.array([-200.319]) ranef_mean_ml_drf_2 = np.array([0.3197174]) ranef_condvar_ml_drf_2 = np.array([0.09122291]) coef_reml_drf_2 = np.array([-1.012137, 0.9790792]) vcov_reml_drf_2 = np.array([ 0.001190455, 1.482666e-05, 1.482666e-05, 0.001066002]).reshape(2, 2, order='F') cov_re_reml_drf_2 = np.array([0.1595015]).reshape(1, 1, order='F') scale_reml_drf_2 = np.array([0.2154276]) loglike_reml_drf_2 = np.array([-205.275]) ranef_mean_reml_drf_2 = np.array([0.3172978]) ranef_condvar_reml_drf_2 = np.array([0.09164674]) coef_ml_drf_3 = np.array([-1.028053, 0.8602685]) vcov_ml_drf_3 = np.array([ 0.01398831, 0.001592619, 0.001592619, 0.01602274]).reshape(2, 2, order='F') cov_re_ml_drf_3 = np.array([0.8130996]).reshape(1, 1, order='F') scale_ml_drf_3 = np.array([3.100447]) loglike_ml_drf_3 = np.array([-477.1707]) ranef_mean_ml_drf_3 = np.array([-0.2641747]) ranef_condvar_ml_drf_3 = np.array([0.6441656]) coef_reml_drf_3 = np.array([-1.027583, 0.8605714]) vcov_reml_drf_3 = np.array([ 0.01411922, 0.001607343, 0.001607343, 0.01617574]).reshape(2, 2, order='F') cov_re_reml_drf_3 = np.array([0.8117898]).reshape(1, 1, order='F') scale_reml_drf_3 = np.array([3.13369]) loglike_reml_drf_3 = np.array([-479.5354]) ranef_mean_reml_drf_3 = np.array([-0.2614875]) ranef_condvar_reml_drf_3 = np.array([0.6447625]) coef_ml_drf_4 = np.array([-1.005151, -0.003657404, 1.054786]) vcov_ml_drf_4 = np.array([ 0.001190639, -5.327162e-05, 5.992985e-05, -5.327162e-05, 0.001460303, -2.662532e-05, 5.992985e-05, -2.662532e-05, 0.00148609]).reshape(3, 3, order='F') cov_re_ml_drf_4 = np.array([0.1703249]).reshape(1, 1, order='F') scale_ml_drf_4 = np.array([0.251763]) loglike_ml_drf_4 = np.array([-231.6389]) ranef_mean_ml_drf_4 = np.array([-0.2063164]) ranef_condvar_ml_drf_4 = np.array([0.0459578]) coef_reml_drf_4 = np.array([-1.005067, -0.003496032, 1.054666]) vcov_reml_drf_4 = np.array([ 0.001206925, -5.4182e-05, 6.073475e-05, -5.4182e-05, 0.001479871, -2.723494e-05, 6.073475e-05, -2.723494e-05, 0.001506198]).reshape(3, 3, order='F') cov_re_reml_drf_4 = np.array([0.1705659]).reshape(1, 1, order='F') scale_reml_drf_4 = np.array([0.2556394]) loglike_reml_drf_4 = np.array([-238.761]) ranef_mean_reml_drf_4 = np.array([-0.2055303]) ranef_condvar_reml_drf_4 = np.array([0.04649027]) coef_ml_drf_5 = np.array([-0.8949725, 0.08141558, 1.052529]) vcov_ml_drf_5 = np.array([ 0.01677563, 0.0008077524, -0.001255011, 0.0008077524, 0.01719346, 0.0009266736, -0.001255011, 0.0009266736, 0.01608435]).reshape(3, 3, order='F') cov_re_ml_drf_5 = np.array([0.3444677]).reshape(1, 1, order='F') scale_ml_drf_5 = np.array([4.103944]) loglike_ml_drf_5 = np.array([-579.4568]) ranef_mean_ml_drf_5 = np.array([0.08254713]) ranef_condvar_ml_drf_5 = np.array([0.3177935]) coef_reml_drf_5 = np.array([-0.8946164, 0.08134261, 1.052486]) vcov_reml_drf_5 = np.array([ 0.0169698, 0.0008162714, -0.001268635, 0.0008162714, 0.01739219, 0.0009345538, -0.001268635, 0.0009345538, 0.01627074]).reshape(3, 3, order='F') cov_re_reml_drf_5 = np.array([0.3420993]).reshape(1, 1, order='F') scale_reml_drf_5 = np.array([4.155737]) loglike_reml_drf_5 = np.array([-582.8377]) ranef_mean_reml_drf_5 = np.array([0.08111449]) ranef_condvar_reml_drf_5 = np.array([0.3160797]) coef_ml_drf_6 = np.array([-0.8885425]) vcov_ml_drf_6 = np.array([0.002443738]).reshape(1, 1, order='F') cov_re_ml_drf_6 = np.array([ 0.2595201, 0.04591071, 0.04591071, 2.204612]).reshape(2, 2, order='F') scale_ml_drf_6 = np.array([0.243133]) loglike_ml_drf_6 = np.array([-382.551]) ranef_mean_ml_drf_6 = np.array([-0.0597406, 0.6037288]) ranef_condvar_ml_drf_6 = np.array([ 0.2420741, 0.2222169, 0.2222169, 0.4228908]).reshape(2, 2, order='F') coef_reml_drf_6 = np.array([-0.8883881]) vcov_reml_drf_6 = np.array([0.002461581]).reshape(1, 1, order='F') cov_re_reml_drf_6 = np.array([ 0.2595767, 0.04590012, 0.04590012, 2.204822]).reshape(2, 2, order='F') scale_reml_drf_6 = np.array([0.2453537]) loglike_reml_drf_6 = np.array([-384.6373]) ranef_mean_reml_drf_6 = np.array([-0.05969892, 0.6031793]) ranef_condvar_reml_drf_6 = np.array([ 0.2421365, 0.2221108, 0.2221108, 0.4244443]).reshape(2, 2, order='F') coef_ml_irf_6 = np.array([-0.8874992]) vcov_ml_irf_6 = np.array([0.002445505]).reshape(1, 1, order='F') cov_re_ml_irf_6 = np.array([ 0.2587624, 0, 0, 2.188653]).reshape(2, 2, order='F') scale_ml_irf_6 = np.array([0.2432694]) loglike_ml_irf_6 = np.array([-382.6581]) coef_reml_irf_6 = np.array([-0.8873394]) vcov_reml_irf_6 = np.array([0.002463375]).reshape(1, 1, order='F') cov_re_reml_irf_6 = np.array([ 0.2588157, 0, 0, 2.188876]).reshape(2, 2, order='F') scale_reml_irf_6 = np.array([0.2454935]) loglike_reml_irf_6 = np.array([-384.7441]) coef_ml_drf_7 = np.array([-0.9645281]) vcov_ml_drf_7 = np.array([0.01994]).reshape(1, 1, order='F') cov_re_ml_drf_7 = np.array([ 0.2051329, 0.0734377, 0.0734377, 3.285381]).reshape(2, 2, order='F') scale_ml_drf_7 = np.array([3.423247]) loglike_ml_drf_7 = np.array([-587.7101]) ranef_mean_ml_drf_7 = np.array([0.07007965, -0.2920284]) ranef_condvar_ml_drf_7 = np.array([ 0.1823183, 0.02247519, 0.02247519, 1.125011]).reshape(2, 2, order='F') coef_reml_drf_7 = np.array([-0.9647862]) vcov_reml_drf_7 = np.array([0.02002546]).reshape(1, 1, order='F') cov_re_reml_drf_7 = np.array([ 0.2056226, 0.0726139, 0.0726139, 3.2876]).reshape(2, 2, order='F') scale_reml_drf_7 = np.array([3.440244]) loglike_reml_drf_7 = np.array([-588.7476]) ranef_mean_reml_drf_7 = np.array([0.07000628, -0.2916737]) ranef_condvar_reml_drf_7 = np.array([ 0.1828266, 0.02229138, 0.02229138, 1.128947]).reshape(2, 2, order='F') coef_ml_irf_7 = np.array([-0.9665524]) vcov_ml_irf_7 = np.array([0.01998144]).reshape(1, 1, order='F') cov_re_ml_irf_7 = np.array([ 0.2021561, 0, 0, 3.270735]).reshape(2, 2, order='F') scale_ml_irf_7 = np.array([3.423186]) loglike_ml_irf_7 = np.array([-587.7456]) coef_reml_irf_7 = np.array([-0.9667854]) vcov_reml_irf_7 = np.array([0.02006657]).reshape(1, 1, order='F') cov_re_reml_irf_7 = np.array([ 0.2026938, 0, 0, 3.273129]).reshape(2, 2, order='F') scale_reml_irf_7 = np.array([3.440197]) loglike_reml_irf_7 = np.array([-588.782]) coef_ml_drf_8 = np.array([-1.083882, 0.8955623]) vcov_ml_drf_8 = np.array([ 0.002491643, 0.0001693531, 0.0001693531, 0.00253309]).reshape(2, 2, order='F') cov_re_ml_drf_8 = np.array([ 0.1506188, 0.126091, 0.126091, 2.485462]).reshape(2, 2, order='F') scale_ml_drf_8 = np.array([0.2586519]) loglike_ml_drf_8 = np.array([-363.6234]) ranef_mean_ml_drf_8 = np.array([0.2852326, -0.5047804]) ranef_condvar_ml_drf_8 = np.array([ 0.05400391, 0.002330104, 0.002330104, 0.122761]).reshape(2, 2, order='F') coef_reml_drf_8 = np.array([-1.083938, 0.8956893]) vcov_reml_drf_8 = np.array([ 0.002528969, 0.0001712206, 0.0001712206, 0.002573335]).reshape(2, 2, order='F') cov_re_reml_drf_8 = np.array([ 0.1505098, 0.1256311, 0.1256311, 2.484219]).reshape(2, 2, order='F') scale_reml_drf_8 = np.array([0.2635901]) loglike_reml_drf_8 = np.array([-367.7667]) ranef_mean_reml_drf_8 = np.array([0.2829798, -0.5042857]) ranef_condvar_reml_drf_8 = np.array([ 0.05463632, 0.002393538, 0.002393538, 0.1249828]).reshape(2, 2, order='F') coef_ml_irf_8 = np.array([-1.079481, 0.898216]) vcov_ml_irf_8 = np.array([ 0.002511536, 0.0001812511, 0.0001812511, 0.002573405]).reshape(2, 2, order='F') cov_re_ml_irf_8 = np.array([ 0.1498568, 0, 0, 2.403849]).reshape(2, 2, order='F') scale_ml_irf_8 = np.array([0.2605245]) loglike_ml_irf_8 = np.array([-364.4824]) coef_reml_irf_8 = np.array([-1.07952, 0.8983678]) vcov_reml_irf_8 = np.array([ 0.002549354, 0.0001833386, 0.0001833386, 0.002614672]).reshape(2, 2, order='F') cov_re_reml_irf_8 = np.array([ 0.1497193, 0, 0, 2.403076]).reshape(2, 2, order='F') scale_reml_irf_8 = np.array([0.2655558]) loglike_reml_irf_8 = np.array([-368.6141]) coef_ml_drf_9 = np.array([-1.272698, 0.8617471]) vcov_ml_drf_9 = np.array([ 0.02208544, 0.001527479, 0.001527479, 0.02597528]).reshape(2, 2, order='F') cov_re_ml_drf_9 = np.array([ 0.510175, 0.08826114, 0.08826114, 3.342888]).reshape(2, 2, order='F') scale_ml_drf_9 = np.array([3.722112]) loglike_ml_drf_9 = np.array([-589.8274]) ranef_mean_ml_drf_9 = np.array([0.03253644, 0.224043]) ranef_condvar_ml_drf_9 = np.array([ 0.3994872, 0.02478884, 0.02478884, 1.195077]).reshape(2, 2, order='F') coef_reml_drf_9 = np.array([-1.272483, 0.861814]) vcov_reml_drf_9 = np.array([ 0.02228589, 0.001535598, 0.001535598, 0.0262125]).reshape(2, 2, order='F') cov_re_reml_drf_9 = np.array([ 0.5123204, 0.08897376, 0.08897376, 3.341722]).reshape(2, 2, order='F') scale_reml_drf_9 = np.array([3.764058]) loglike_reml_drf_9 = np.array([-591.7188]) ranef_mean_reml_drf_9 = np.array([0.03239688, 0.2230525]) ranef_condvar_reml_drf_9 = np.array([ 0.401762, 0.02521271, 0.02521271, 1.203536]).reshape(2, 2, order='F') coef_ml_irf_9 = np.array([-1.277018, 0.86395]) vcov_ml_irf_9 = np.array([ 0.02205706, 0.001509887, 0.001509887, 0.02599941]).reshape(2, 2, order='F') cov_re_ml_irf_9 = np.array([ 0.5086816, 0, 0, 3.312757]).reshape(2, 2, order='F') scale_ml_irf_9 = np.array([3.72105]) loglike_ml_irf_9 = np.array([-589.8628]) coef_reml_irf_9 = np.array([-1.276822, 0.8640243]) vcov_reml_irf_9 = np.array([ 0.02225705, 0.001517774, 0.001517774, 0.02623682]).reshape(2, 2, order='F') cov_re_reml_irf_9 = np.array([ 0.5107725, 0, 0, 3.31152]).reshape(2, 2, order='F') scale_reml_irf_9 = np.array([3.762967]) loglike_reml_irf_9 = np.array([-591.7543]) coef_ml_drf_10 = np.array([-0.9419566, -0.02359824, 1.085796]) vcov_ml_drf_10 = np.array([ 0.001963536, -0.0003221793, 0.0001950186, -0.0003221793, 0.002534251, 0.0004107718, 0.0001950186, 0.0004107718, 0.002580736]).reshape(3, 3, order='F') cov_re_ml_drf_10 = np.array([ 0.2040541, 0.09038325, 0.09038325, 2.218903]).reshape(2, 2, order='F') scale_ml_drf_10 = np.array([0.2558286]) loglike_ml_drf_10 = np.array([-379.6591]) ranef_mean_ml_drf_10 = np.array([0.03876325, -0.725853]) ranef_condvar_ml_drf_10 = np.array([ 0.1988816, 0.1872403, 0.1872403, 0.4052274]).reshape(2, 2, order='F') coef_reml_drf_10 = np.array([-0.9426367, -0.02336203, 1.085733]) vcov_reml_drf_10 = np.array([ 0.002011348, -0.0003300612, 0.0002002948, -0.0003300612, 0.002589149, 0.000418987, 0.0002002948, 0.000418987, 0.002637433]).reshape(3, 3, order='F') cov_re_reml_drf_10 = np.array([ 0.2034827, 0.09063836, 0.09063836, 2.219191]).reshape(2, 2, order='F') scale_reml_drf_10 = np.array([0.2630213]) loglike_reml_drf_10 = np.array([-386.0008]) ranef_mean_reml_drf_10 = np.array([0.03838686, -0.7240812]) ranef_condvar_reml_drf_10 = np.array([ 0.1983981, 0.1865469, 0.1865469, 0.4100937]).reshape(2, 2, order='F') coef_ml_irf_10 = np.array([-0.9441033, -0.01755913, 1.088568]) vcov_ml_irf_10 = np.array([ 0.001960114, -0.0003215658, 0.0001944005, -0.0003215658, 0.00253441, 0.0004061179, 0.0001944005, 0.0004061179, 0.002589158]).reshape(3, 3, order='F') cov_re_ml_irf_10 = np.array([ 0.2032228, 0, 0, 2.192893]).reshape(2, 2, order='F') scale_ml_irf_10 = np.array([0.2553399]) loglike_ml_irf_10 = np.array([-380.162]) coef_reml_irf_10 = np.array([-0.9448257, -0.01722993, 1.088557]) vcov_reml_irf_10 = np.array([ 0.00200783, -0.0003294349, 0.0001996613, -0.0003294349, 0.00258937, 0.0004141667, 0.0001996613, 0.0004141667, 0.002646242]).reshape(3, 3, order='F') cov_re_reml_irf_10 = np.array([ 0.2026653, 0, 0, 2.193124]).reshape(2, 2, order='F') scale_reml_irf_10 = np.array([0.2625147]) loglike_reml_irf_10 = np.array([-386.5024]) coef_ml_drf_11 = np.array([-1.36971, 0.1596278, 0.8588724]) vcov_ml_drf_11 = np.array([ 0.0232326, 0.00172214, 0.002275343, 0.00172214, 0.02318941, 0.0004755663, 0.002275343, 0.0004755663, 0.02123474]).reshape(3, 3, order='F') cov_re_ml_drf_11 = np.array([ 0.3719096, 0.332198, 0.332198, 1.120588]).reshape(2, 2, order='F') scale_ml_drf_11 = np.array([4.849781]) loglike_ml_drf_11 = np.array([-601.6432]) ranef_mean_ml_drf_11 = np.array([-0.4256917, -0.3907759]) ranef_condvar_ml_drf_11 = np.array([ 0.2987928, 0.1992074, 0.1992074, 0.7477486]).reshape(2, 2, order='F') coef_reml_drf_11 = np.array([-1.370236, 0.1597671, 0.8585994]) vcov_reml_drf_11 = np.array([ 0.02351795, 0.001749756, 0.002301599, 0.001749756, 0.02346869, 0.0004785668, 0.002301599, 0.0004785668, 0.02149093]).reshape(3, 3, order='F') cov_re_reml_drf_11 = np.array([ 0.3680346, 0.3324419, 0.3324419, 1.118623]).reshape(2, 2, order='F') scale_reml_drf_11 = np.array([4.922222]) loglike_reml_drf_11 = np.array([-604.5746]) ranef_mean_reml_drf_11 = np.array([-0.4168539, -0.3879533]) ranef_condvar_reml_drf_11 = np.array([ 0.2965372, 0.2010191, 0.2010191, 0.7503986]).reshape(2, 2, order='F') coef_ml_irf_11 = np.array([-1.370117, 0.1414964, 0.8466083]) vcov_ml_irf_11 = np.array([ 0.02319951, 0.001705996, 0.002265252, 0.001705996, 0.02345623, 0.000514879, 0.002265252, 0.000514879, 0.02153162]).reshape(3, 3, order='F') cov_re_ml_irf_11 = np.array([ 0.4004789, 0, 0, 1.108087]).reshape(2, 2, order='F') scale_ml_irf_11 = np.array([4.78776]) loglike_ml_irf_11 = np.array([-602.308]) coef_reml_irf_11 = np.array([-1.370663, 0.1417561, 0.8464232]) vcov_reml_irf_11 = np.array([ 0.02348548, 0.001734072, 0.002291519, 0.001734072, 0.02373715, 0.0005177618, 0.002291519, 0.0005177618, 0.02178966]).reshape(3, 3, order='F') cov_re_reml_irf_11 = np.array([ 0.3966454, 0, 0, 1.106551]).reshape(2, 2, order='F') scale_reml_irf_11 = np.array([4.860342]) loglike_reml_irf_11 = np.array([-605.2274])