'''Paneldata model with fixed effect (constants) and AR(1) errors checking fast evaluation of groupar1filter quickly written to try out grouparfilter without python loops maybe the example has MA(1) not AR(1) errors, I'm not sure and changed this. results look good, I'm also differencing the dummy variable (constants) ??? e.g. nobs = 35 true 0.6, 10, 20, 30 (alpha, mean_0, mean_1, mean_2) estimate 0.369453125 [ 10.14646929 19.87135086 30.12706505] Currently minimizes ssr but could switch to minimize llf, i.e. conditional MLE. This should correspond to iterative FGLS, where data are AR(1) transformed similar to GLSAR ? Result statistic from GLS return by OLS on transformed data should be asymptotically correct (check) Could be extended to AR(p) errors, but then requires panel with larger T ''' import numpy as np from scipy import optimize from statsmodels.regression.linear_model import OLS class PanelAR1(object): def __init__(self, endog, exog=None, groups=None): #take this from a super class, no checking is done here nobs = endog.shape[0] self.endog = endog if exog is not None: self.exog = exog self.groups_start = (np.diff(groups)!=0) self.groups_valid = ~self.groups_start def ar1filter(self, xy, alpha): #print(alpha,) return (xy[1:] - alpha * xy[:-1])[self.groups_valid] def fit_conditional(self, alpha): y = self.ar1filter(self.endog, alpha) x = self.ar1filter(self.exog, alpha) res = OLS(y, x).fit() return res.ssr #res.llf def fit(self): alpha0 = 0.1 #startvalue func = self.fit_conditional fitres = optimize.fmin(func, alpha0) # fit_conditional only returns ssr for now alpha = fitres[0] y = self.ar1filter(self.endog, alpha) x = self.ar1filter(self.exog, alpha) reso = OLS(y, x).fit() return fitres, reso if __name__ == '__main__': #------------ development code for groupar1filter and example groups = np.array([0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2, 2,2,2,2,2,2,2,2]) nobs = len(groups) data0 = np.arange(nobs) data = np.arange(1,nobs+1) - 0.5*np.arange(nobs) + 0.1*np.random.randn(nobs) y00 = 0.5*np.random.randn(nobs+1) # I do not think a trend is handled yet data = np.arange(nobs) + y00[1:] + 0.2*y00[:-1] + 0.1*np.random.randn(nobs) #Are these AR(1) or MA(1) errors ??? data = y00[1:] + 0.6*y00[:-1] #+ 0.1*np.random.randn(nobs) group_codes = np.unique(groups) group_dummy = (groups[:,None] == group_codes).astype(int) groups_start = (np.diff(groups)!=0) groups_valid = (np.diff(groups)==0) #this applies to y with length for AR(1) #could use np.nonzero for index instead y = data + np.dot(group_dummy, np.array([10, 20, 30])) y0 = data0 + np.dot(group_dummy, np.array([10, 20, 30])) print(groups_valid) print(np.diff(y)[groups_valid]) alpha = 1 #test with 1 print((y0[1:] - alpha*y0[:-1])[groups_valid]) alpha = 0.2 #test with 1 print((y0[1:] - alpha*y0[:-1] + 0.001)[groups_valid]) #this is now AR(1) for each group separately #------------ #fitting the example exog = np.ones(nobs) exog = group_dummy mod = PanelAR1(y, exog, groups=groups) #mod = PanelAR1(data, exog, groups=groups) #data does not contain different means #print(mod.ar1filter(mod.endog, 1)) resa, reso = mod.fit() print(resa[0], reso.params)