# -*- coding: utf-8 -*- """ F test for null hypothesis that coefficients in several regressions are the same * implemented by creating groupdummies*exog and testing appropriate contrast matrices * similar to test for structural change in all variables at predefined break points * allows only one group variable * currently tests for change in all exog variables * allows for heterogscedasticity, error variance varies across groups * does not work if there is a group with only a single observation TODO ---- * generalize anova structure, - structural break in only some variables - compare structural breaks in several exog versus constant only - fast way to construct comparisons * print anova style results * add all pairwise comparison tests (DONE) with and without Bonferroni correction * add additional test, likelihood-ratio, lagrange-multiplier, wald ? * test for heteroscedasticity, equality of variances - how? - like lagrange-multiplier in stattools heteroscedasticity tests * permutation or bootstrap test statistic or pvalues References ---------- Greene: section 7.4 Modeling and Testing for a Structural Break is not the same because I use a different normalization, which looks easier for more than 2 groups/subperiods after looking at Greene: * my version assumes that all groups are large enough to estimate the coefficients * in sections 7.4.2 and 7.5.3, predictive tests can also be used when there are insufficient (nobs>> res.contrasts.keys() [(0, 1), 1, 'all', 3, (1, 2), 2, (1, 3), (2, 3), (0, 3), (0, 2)] The keys are based on the original names or labels of the groups. TODO: keys can be numpy scalars and then the keys cannot be sorted ''' if not hasattr(self, 'weights'): self.fitbygroups() groupdummy = (self.groupsint[:,None] == self.uniqueint).astype(int) #order of dummy variables by variable - not used #dummyexog = self.exog[:,:,None]*groupdummy[:,None,1:] #order of dummy variables by grous - used dummyexog = self.exog[:,None,:]*groupdummy[:,1:,None] exog = np.c_[self.exog, dummyexog.reshape(self.exog.shape[0],-1)] #self.nobs ?? #Notes: I changed to drop first group from dummy #instead I want one full set dummies if self.het: weights = self.weights res = WLS(self.endog, exog, weights=weights).fit() else: res = OLS(self.endog, exog).fit() self.lsjoint = res contrasts = {} nvars = self.exog.shape[1] nparams = exog.shape[1] ndummies = nparams - nvars contrasts['all'] = np.c_[np.zeros((ndummies, nvars)), np.eye(ndummies)] for groupind, group in enumerate(self.unique[1:]): #need enumerate if groups != groupsint groupind = groupind + 1 contr = np.zeros((nvars, nparams)) contr[:,nvars*groupind:nvars*(groupind+1)] = np.eye(nvars) contrasts[group] = contr #save also for pairs, see next contrasts[(self.unique[0], group)] = contr #Note: I'm keeping some duplication for testing pairs = np.triu_indices(len(self.unique),1) for ind1,ind2 in zip(*pairs): #replace with group1, group2 in sorted(keys) if ind1 == 0: continue # need comparison with benchmark/normalization group separate g1 = self.unique[ind1] g2 = self.unique[ind2] group = (g1, g2) contr = np.zeros((nvars, nparams)) contr[:,nvars*ind1:nvars*(ind1+1)] = np.eye(nvars) contr[:,nvars*ind2:nvars*(ind2+1)] = -np.eye(nvars) contrasts[group] = contr self.contrasts = contrasts def fitpooled(self): '''fit the pooled model, which assumes there are no differences across groups ''' if self.het: if not hasattr(self, 'weights'): self.fitbygroups() weights = self.weights res = WLS(self.endog, self.exog, weights=weights).fit() else: res = OLS(self.endog, self.exog).fit() self.lspooled = res def ftest_summary(self): '''run all ftests on the joint model Returns ------- fres : str a string that lists the results of all individual f-tests summarytable : list of tuples contains (pair, (fvalue, pvalue,df_denom, df_num)) for each f-test Note ---- This are the raw results and not formatted for nice printing. ''' if not hasattr(self, 'lsjoint'): self.fitjoint() txt = [] summarytable = [] txt.append('F-test for equality of coefficients across groups') fres = self.lsjoint.f_test(self.contrasts['all']) txt.append(fres.__str__()) summarytable.append(('all',(fres.fvalue, fres.pvalue, fres.df_denom, fres.df_num))) # for group in self.unique[1:]: #replace with group1, group2 in sorted(keys) # txt.append('F-test for equality of coefficients between group' # ' %s and group %s' % (group, '0')) # fres = self.lsjoint.f_test(self.contrasts[group]) # txt.append(fres.__str__()) # summarytable.append((group,(fres.fvalue, fres.pvalue, fres.df_denom, fres.df_num))) pairs = np.triu_indices(len(self.unique),1) for ind1,ind2 in zip(*pairs): #replace with group1, group2 in sorted(keys) g1 = self.unique[ind1] g2 = self.unique[ind2] txt.append('F-test for equality of coefficients between group' ' %s and group %s' % (g1, g2)) group = (g1, g2) fres = self.lsjoint.f_test(self.contrasts[group]) txt.append(fres.__str__()) summarytable.append((group,(fres.fvalue, fres.pvalue, fres.df_denom, fres.df_num))) self.summarytable = summarytable return '\n'.join(txt), summarytable def print_summary(self, res): '''printable string of summary ''' groupind = res.groups #res.fitjoint() #not really necessary, because called by ftest_summary if hasattr(res, 'self.summarytable'): summtable = self.summarytable else: _, summtable = res.ftest_summary() txt = '' #print ft[0] #skip because table is nicer templ = \ '''Table of F-tests for overall or pairwise equality of coefficients' %(tab)s Notes: p-values are not corrected for many tests (no Bonferroni correction) * : reject at 5%% uncorrected confidence level Null hypothesis: all or pairwise coefficient are the same' Alternative hypothesis: all coefficients are different' Comparison with stats.f_oneway %(statsfow)s Likelihood Ratio Test %(lrtest)s Null model: pooled all coefficients are the same across groups,' Alternative model: all coefficients are allowed to be different' not verified but looks close to f-test result' OLS parameters by group from individual, separate ols regressions' %(olsbg)s for group in sorted(res.olsbygroup): r = res.olsbygroup[group] print group, r.params Check for heteroscedasticity, ' variance and standard deviation for individual regressions' %(grh)s variance ', res.sigmabygroup standard dev', np.sqrt(res.sigmabygroup) ''' from statsmodels.iolib import SimpleTable resvals = {} resvals['tab'] = str(SimpleTable([(['%r' % (row[0],)] + list(row[1]) + ['*']*(row[1][1]>0.5).item() ) for row in summtable], headers=['pair', 'F-statistic','p-value','df_denom', 'df_num'])) resvals['statsfow'] = str(stats.f_oneway(*[res.endog[groupind==gr] for gr in res.unique])) #resvals['lrtest'] = str(res.lr_test()) resvals['lrtest'] = str(SimpleTable([res.lr_test()], headers=['likelihood ratio', 'p-value', 'df'] )) resvals['olsbg'] = str(SimpleTable([[group] + res.olsbygroup[group].params.tolist() for group in sorted(res.olsbygroup)])) resvals['grh'] = str(SimpleTable(np.vstack([res.sigmabygroup, np.sqrt(res.sigmabygroup)]), headers=res.unique.tolist())) return templ % resvals # a variation of this has been added to RegressionResults as compare_lr def lr_test(self): r''' generic likelihood ratio test between nested models \begin{align} D & = -2(\ln(\text{likelihood for null model}) - \ln(\text{likelihood for alternative model})) \\ & = -2\ln\left( \frac{\text{likelihood for null model}}{\text{likelihood for alternative model}} \right). \end{align} is distributed as chisquare with df equal to difference in number of parameters or equivalently difference in residual degrees of freedom (sign?) TODO: put into separate function ''' if not hasattr(self, 'lsjoint'): self.fitjoint() if not hasattr(self, 'lspooled'): self.fitpooled() loglikejoint = self.lsjoint.llf loglikepooled = self.lspooled.llf lrstat = -2*(loglikepooled - loglikejoint) #??? check sign lrdf = self.lspooled.df_resid - self.lsjoint.df_resid lrpval = stats.chi2.sf(lrstat, lrdf) return lrstat, lrpval, lrdf