'''conditional logit and nested conditional logit nested conditional logit is supposed to be the random utility version (RU2 and maybe RU1) References: ----------- currently based on: Greene, Econometric Analysis, 5th edition and draft (?) Hess, Florian, 2002, Structural Choice analysis with nested logit models, The Stats Journal 2(3) pp 227-252 not yet used: Silberhorn Nadja, Yasemin Boztug, Lutz Hildebrandt, 2008, Estimation with the nested logit model: specifications and software particularities, OR Spectrum Koppelman, Frank S., and Chandra Bhat with technical support from Vaneet Sethi, Sriram Subramanian, Vincent Bernardin and Jian Zhang, 2006, A Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models Author: josef-pktd License: BSD (simplified) ''' import numpy as np import numpy.lib.recfunctions as recf from scipy import optimize class TryCLogit(object): ''' Conditional Logit, data handling test Parameters ---------- endog : array (nobs,nchoices) dummy encoding of realized choices exog_bychoices : list of arrays explanatory variables, one array of exog for each choice. Variables with common coefficients have to be first in each array ncommon : int number of explanatory variables with common coefficients Notes ----- Utility for choice j is given by $V_j = X_j * beta + Z * gamma_j$ where X_j contains generic variables (terminology Hess) that have the same coefficient across choices, and Z are variables, like individual-specific variables that have different coefficients across variables. If there are choice specific constants, then they should be contained in Z. For identification, the constant of one choice should be dropped. ''' def __init__(self, endog, exog_bychoices, ncommon): self.endog = endog self.exog_bychoices = exog_bychoices self.ncommon = ncommon self.nobs, self.nchoices = endog.shape self.nchoices = len(exog_bychoices) #TODO: rename beta to params and include inclusive values for nested CL betaind = [exog_bychoices[ii].shape[1]-ncommon for ii in range(4)] zi = np.r_[[ncommon], ncommon + np.array(betaind).cumsum()] beta_indices = [np.r_[np.array([0, 1]),z[zi[ii]:zi[ii+1]]] for ii in range(len(zi)-1)] self.beta_indices = beta_indices #for testing only beta = np.arange(7) betaidx_bychoices = [beta[idx] for idx in beta_indices] def xbetas(self, params): '''these are the V_i ''' res = np.empty((self.nobs, self.nchoices)) for choiceind in range(self.nchoices): res[:,choiceind] = np.dot(self.exog_bychoices[choiceind], params[self.beta_indices[choiceind]]) return res def loglike(self, params): #normalization ? xb = self.xbetas(params) expxb = np.exp(xb) sumexpxb = expxb.sum(1)#[:,None] probs = expxb/expxb.sum(1)[:,None] #we do not really need this for all loglike = (self.endog * np.log(probs)).sum(1) #is this the same: YES #self.logliketest = (self.endog * xb).sum(1) - np.log(sumexpxb) #if self.endog where index then xb[self.endog] return -loglike.sum() #return sum for now not for each observation def fit(self, start_params=None): if start_params is None: start_params = np.zeros(6) # need better np.zeros(6) return optimize.fmin(self.loglike, start_params, maxfun=10000) class TryNCLogit(object): ''' Nested Conditional Logit (RUNMNL), data handling test unfinished, does not do anything yet ''' def __init__(self, endog, exog_bychoices, ncommon): self.endog = endog self.exog_bychoices = exog_bychoices self.ncommon = ncommon self.nobs, self.nchoices = endog.shape self.nchoices = len(exog_bychoices) #TODO rename beta to params and include inclusive values for nested CL betaind = [exog_bychoices[ii].shape[1]-ncommon for ii in range(4)] zi = np.r_[[ncommon], ncommon + np.array(betaind).cumsum()] beta_indices = [np.r_[np.array([0, 1]),z[zi[ii]:zi[ii+1]]] for ii in range(len(zi)-1)] self.beta_indices = beta_indices #for testing only beta = np.arange(7) betaidx_bychoices = [beta[idx] for idx in beta_indices] def xbetas(self, params): '''these are the V_i ''' res = np.empty((self.nobs, self.nchoices)) for choiceind in range(self.nchoices): res[:,choiceind] = np.dot(self.exog_bychoices[choiceind], params[self.beta_indices[choiceind]]) return res def loglike_leafbranch(self, params, tau): #normalization ? #check/change naming for tau xb = self.xbetas(params) expxb = np.exp(xb/tau) sumexpxb = expxb.sum(1)#[:,None] logsumexpxb = np.log(sumexpxb) #loglike = (self.endog * xb).sum(1) - logsumexpxb probs = expxb/sumexpxb[:,None] return probs, logsumexpxp # noqa:F821 See GH#5756 #if self.endog where index then xb[self.endog] #return -loglike.sum() #return sum for now not for each observation def loglike_branch(self, params, tau): #not yet sure how to keep track of branches during walking of tree ivs = [] for b in branches: # noqa:F821 See GH#5756 probs, iv = self.loglike_leafbranch(params, tau) ivs.append(iv) #ivs = np.array(ivs) #note ivs is (nobs,nbranchchoices) ivs = np.column_stack(ivs) # this way ? exptiv = np.exp(tau*ivs) sumexptiv = exptiv.sum(1) logsumexpxb = np.log(sumexpxb) # noqa:F821 See GH#5756 probs = exptiv/sumexptiv[:,None] ####### obsolete version to try out attaching data, ####### new in treewalkerclass.py, copy new version to replace this ####### problem with bzr I will disconnect history when copying testxb = 0 #global to class class RU2NMNL(object): '''Nested Multinomial Logit with Random Utility 2 parameterization ''' def __init__(self, endog, exog, tree, paramsind): self.endog = endog self.datadict = exog self.tree = tree self.paramsind = paramsind self.branchsum = '' self.probs = {} def calc_prob(self, tree, keys=None): '''walking a tree bottom-up based on dictionary ''' endog = self.endog datadict = self.datadict paramsind = self.paramsind branchsum = self.branchsum if isinstance(tree, tuple): #assumes leaves are int for choice index name, subtree = tree print(name, datadict[name]) print('subtree', subtree) keys = [] if testxb: branchsum = datadict[name] else: branchsum = name #0 for b in subtree: print(b) #branchsum += branch2(b) branchsum = branchsum + self.calc_prob(b, keys) print('branchsum', branchsum, keys) for k in keys: self.probs[k] = self.probs[k] + ['*' + name + '-prob'] else: keys.append(tree) self.probs[tree] = [tree + '-prob' + '(%s)' % ', '.join(self.paramsind[tree])] if testxb: leavessum = sum((datadict[bi] for bi in tree)) print('final branch with', tree, ''.join(tree), leavessum) #sum(tree) return leavessum #sum(xb[tree]) else: return ''.join(tree) #sum(tree) print('working on branch', tree, branchsum) return branchsum #Trying out ways to handle data #------------------------------ #travel data from Greene dta = np.genfromtxt('TableF23-2.txt', skip_header=1, names='Mode Ttme Invc Invt GC Hinc PSize'.split()) endog = dta['Mode'].reshape(-1,4).copy() #I do not want a view nobs, nchoices = endog.shape datafloat = dta.view(float).reshape(-1,7) exog = datafloat[:,1:].reshape(-1,6*nchoices).copy() #I do not want a view print(endog.sum(0)) varnames = dta.dtype.names print(varnames[1:]) modes = ['Air', 'Train', 'Bus', 'Car'] print(exog.mean(0).reshape(nchoices, -1)) # Greene Table 23.23 #try dummy encoding for individual-specific variables exog_choice_names = ['GC', 'Ttme'] exog_choice = np.column_stack([dta[name] for name in exog_choice_names]) exog_choice = exog_choice.reshape(-1,len(exog_choice_names)*nchoices) exog_choice = np.c_[endog, exog_choice] # add constant dummy exog_individual = dta['Hinc'][:,None] #exog2 = np.c_[exog_choice, exog_individual*endog] # we can also overwrite and select in original datafloat # e.g. Hinc*endog{choice) choice_index = np.arange(dta.shape[0]) % nchoices hinca = dta['Hinc']*(choice_index==0) dta2=recf.append_fields(dta, ['Hinca'],[hinca], usemask=False) #another version xi = [] for ii in range(4): xi.append(datafloat[choice_index==ii]) #one more dta1 = recf.append_fields(dta, ['Const'],[np.ones(dta.shape[0])], usemask=False) xivar = [['GC', 'Ttme', 'Const', 'Hinc'], ['GC', 'Ttme', 'Const'], ['GC', 'Ttme', 'Const'], ['GC', 'Ttme']] #need to drop one constant xi = [] for ii in range(4): xi.append(dta1[xivar[ii]][choice_index==ii]) #this does not change sequence of columns, bug report by Skipper I think ncommon = 2 betaind = [len(xi[ii].dtype.names)-ncommon for ii in range(4)] zi=np.r_[[ncommon], ncommon+np.array(betaind).cumsum()] z=np.arange(7) #what is n? betaindices = [np.r_[np.array([0, 1]),z[zi[ii]:zi[ii+1]]] for ii in range(len(zi)-1)] beta = np.arange(7) betai = [beta[idx] for idx in betaindices] #examples for TryCLogit #---------------------- #get exogs as float xifloat = [xx.view(float).reshape(nobs,-1) for xx in xi] clogit = TryCLogit(endog, xifloat, 2) debug = 0 if debug: res = optimize.fmin(clogit.loglike, np.ones(6)) #estimated parameters from Greene: tab2324 = [-0.15501, -0.09612, 0.01329, 5.2074, 3.8690, 3.1632] if debug: res2 = optimize.fmin(clogit.loglike, tab2324) res3 = optimize.fmin(clogit.loglike, np.zeros(6),maxfun=10000) #this has same numbers as Greene table 23.24, but different sequence #coefficient on GC is exactly 10% of Greene's #TODO: get better starting values ''' Optimization terminated successfully. Current function value: 199.128369 Iterations: 957 Function evaluations: 1456 array([-0.0961246 , -0.0155019 , 0.01328757, 5.20741244, 3.86905293, 3.16319074]) ''' res3corr = res3[[1, 0, 2, 3, 4, 5]] res3corr[0] *= 10 print(res3corr - tab2324) # diff 1e-5 to 1e-6 #199.128369 - 199.1284 #llf same up to print(precision of Greene print(clogit.fit()) tree0 = ('top', [('Fly',['Air']), ('Ground', ['Train', 'Car', 'Bus']) ]) datadict = dict(zip(['Air', 'Train', 'Bus', 'Car'], [xifloat[i]for i in range(4)])) #for testing only (mock that returns it's own name datadict = dict(zip(['Air', 'Train', 'Bus', 'Car'], ['Airdata', 'Traindata', 'Busdata', 'Cardata'])) datadict.update({'top' : [], 'Fly' : [], 'Ground': []}) paramsind = {'top' : [], 'Fly' : [], 'Ground': [], 'Air' : ['GC', 'Ttme', 'ConstA', 'Hinc'], 'Train' : ['GC', 'Ttme', 'ConstT'], 'Bus' : ['GC', 'Ttme', 'ConstB'], 'Car' : ['GC', 'Ttme'] } modru = RU2NMNL(endog, datadict, tree0, paramsind) print(modru.calc_prob(modru.tree)) print('\nmodru.probs') print(modru.probs)