# -*- coding: utf-8 -*- """ Created on Sat Oct 01 20:20:16 2011 Author: Josef Perktold License: BSD-3 TODO: check orientation, size and alpha should be increasing for interp1d, but what is alpha? can be either sf or cdf probability change it to use one consistent notation check: instead of bound checking I could use the fill-value of the interpolators """ import numpy as np from scipy.interpolate import interp1d, interp2d, Rbf from statsmodels.tools.decorators import cache_readonly class TableDist(object): """ Distribution, critical values and p-values from tables currently only 1 extra parameter, e.g. sample size Parameters ---------- alpha : array_like, 1d probabiliy in the table, could be either sf (right tail) or cdf (left tail) size : array_like, 1d The sample sizes for the table crit_table : array_like, 2d The sample sizes in the table array with critical values for sample size in rows and probability in columns asymptotic : callable, optional Callable function with the form fn(nobs) that returns len(alpha) critical values where the critical value in position i corresponds to alpha[i] min_nobs : int, optional Minimum number of observations to use the asymptotic distribution. If not provided, uses max(size). max_nobs : int, optional Maximum number of observations to use the tabular distribution. If not provided, uses max(size) Notes ----- size and alpha must be sorted and increasing. If both min_nobs and max_nobs are provided, then the critical values from the tabular distribution and the asymptotic distribution are linearly blended using the formula :math:`w cv_a + (1-w) cv_t` where the weight is :math:`w = (n - a_{min}) / (a_{max} - a_{min})`. This ensures the transition between the tabular and the asymptotic critical values is continuous. If these are not provided, then the asymptotic critical value is used for nobs > max(size). """ def __init__(self, alpha, size, crit_table, asymptotic=None, min_nobs=None, max_nobs=None): self.alpha = np.asarray(alpha) if self.alpha.ndim != 1: raise ValueError('alpha is not 1d') elif (np.diff(self.alpha) <= 0).any(): raise ValueError('alpha is not sorted') self.size = np.asarray(size) if self.size.ndim != 1: raise ValueError('size is not 1d') elif (np.diff(self.size) <= 0).any(): raise ValueError('size is not sorted') if self.size.ndim == 1: if (np.diff(alpha) <= 0).any(): raise ValueError('alpha is not sorted') self.crit_table = np.asarray(crit_table) if self.crit_table.shape != (self.size.shape[0], self.alpha.shape[0]): raise ValueError('crit_table must have shape' '(len(size), len(alpha))') self.n_alpha = len(alpha) self.signcrit = np.sign(np.diff(self.crit_table, 1).mean()) if self.signcrit > 0: # increasing self.critv_bounds = self.crit_table[:, [0, 1]] else: self.critv_bounds = self.crit_table[:, [1, 0]] self.asymptotic = None max_size = self.max_size = max(size) if asymptotic is not None: try: cv = asymptotic(self.max_size + 1) except Exception as exc: raise type(exc)('Calling asymptotic(self.size+1) failed. The ' 'error message was:' '\n\n{err_msg}'.format(err_msg=exc.args[0])) if len(cv) != len(alpha): raise ValueError('asymptotic does not return len(alpha) ' 'values') self.asymptotic = asymptotic self.min_nobs = max_size if min_nobs is None else min_nobs self.max_nobs = max_size if max_nobs is None else max_nobs if self.min_nobs > max_size: raise ValueError('min_nobs > max(size)') if self.max_nobs > max_size: raise ValueError('max_nobs > max(size)') @cache_readonly def polyn(self): polyn = [interp1d(self.size, self.crit_table[:, i]) for i in range(self.n_alpha)] return polyn @cache_readonly def poly2d(self): # check for monotonicity ? # fix this, interp needs increasing poly2d = interp2d(self.size, self.alpha, self.crit_table) return poly2d @cache_readonly def polyrbf(self): xs, xa = np.meshgrid(self.size.astype(float), self.alpha) polyrbf = Rbf(xs.ravel(), xa.ravel(), self.crit_table.T.ravel(), function='linear') return polyrbf def _critvals(self, n): """ Rows of the table, linearly interpolated for given sample size Parameters ---------- n : float sample size, second parameter of the table Returns ------- critv : ndarray, 1d critical values (ppf) corresponding to a row of the table Notes ----- This is used in two step interpolation, or if we want to know the critical values for all alphas for any sample size that we can obtain through interpolation """ if n > self.max_size: if self.asymptotic is not None: cv = self.asymptotic(n) else: raise ValueError('n is above max(size) and no asymptotic ' 'distribtuion is provided') else: cv = ([p(n) for p in self.polyn]) if n > self.min_nobs: w = (n - self.min_nobs) / (self.max_nobs - self.min_nobs) w = min(1.0, w) a_cv = self.asymptotic(n) cv = w * a_cv + (1 - w) * cv return cv def prob(self, x, n): """ Find pvalues by interpolation, either cdf(x) Returns extreme probabilities, 0.001 and 0.2, for out of range Parameters ---------- x : array_like observed value, assumed to follow the distribution in the table n : float sample size, second parameter of the table Returns ------- prob : array_like This is the probability for each value of x, the p-value in underlying distribution is for a statistical test. """ critv = self._critvals(n) alpha = self.alpha if self.signcrit < 1: # reverse if critv is decreasing critv, alpha = critv[::-1], alpha[::-1] # now critv is increasing if np.size(x) == 1: if x < critv[0]: return alpha[0] elif x > critv[-1]: return alpha[-1] return interp1d(critv, alpha)(x)[()] else: # vectorized cond_low = (x < critv[0]) cond_high = (x > critv[-1]) cond_interior = ~np.logical_or(cond_low, cond_high) probs = np.nan * np.ones(x.shape) # mistake if nan left probs[cond_low] = alpha[0] probs[cond_low] = alpha[-1] probs[cond_interior] = interp1d(critv, alpha)(x[cond_interior]) return probs def crit(self, prob, n): """ Returns interpolated quantiles, similar to ppf or isf use two sequential 1d interpolation, first by n then by prob Parameters ---------- prob : array_like probabilities corresponding to the definition of table columns n : int or float sample size, second parameter of the table Returns ------- ppf : array_like critical values with same shape as prob """ prob = np.asarray(prob) alpha = self.alpha critv = self._critvals(n) # vectorized cond_ilow = (prob > alpha[0]) cond_ihigh = (prob < alpha[-1]) cond_interior = np.logical_or(cond_ilow, cond_ihigh) # scalar if prob.size == 1: if cond_interior: return interp1d(alpha, critv)(prob) else: return np.nan # vectorized quantile = np.nan * np.ones(prob.shape) # nans for outside quantile[cond_interior] = interp1d(alpha, critv)(prob[cond_interior]) return quantile def crit3(self, prob, n): """ Returns interpolated quantiles, similar to ppf or isf uses Rbf to interpolate critical values as function of `prob` and `n` Parameters ---------- prob : array_like probabilities corresponding to the definition of table columns n : int or float sample size, second parameter of the table Returns ------- ppf : array_like critical values with same shape as prob, returns nan for arguments that are outside of the table bounds """ prob = np.asarray(prob) alpha = self.alpha # vectorized cond_ilow = (prob > alpha[0]) cond_ihigh = (prob < alpha[-1]) cond_interior = np.logical_or(cond_ilow, cond_ihigh) # scalar if prob.size == 1: if cond_interior: return self.polyrbf(n, prob) else: return np.nan # vectorized quantile = np.nan * np.ones(prob.shape) # nans for outside quantile[cond_interior] = self.polyrbf(n, prob[cond_interior]) return quantile