"""Parallel utility function using joblib copied from https://github.com/mne-tools/mne-python Author: Alexandre Gramfort License: Simplified BSD changes for statsmodels (Josef Perktold) - try import from joblib directly, (does not import all of sklearn) """ from statsmodels.tools.sm_exceptions import (ModuleUnavailableWarning, module_unavailable_doc) def parallel_func(func, n_jobs, verbose=5): """Return parallel instance with delayed function Util function to use joblib only if available Parameters ---------- func : callable A function n_jobs : int Number of jobs to run in parallel verbose : int Verbosity level Returns ------- parallel : instance of joblib.Parallel or list The parallel object my_func : callable func if not parallel or delayed(func) n_jobs : int Number of jobs >= 0 Examples -------- >>> from math import sqrt >>> from statsmodels.tools.parallel import parallel_func >>> parallel, p_func, n_jobs = parallel_func(sqrt, n_jobs=-1, verbose=0) >>> print(n_jobs) >>> parallel(p_func(i**2) for i in range(10)) """ try: try: from joblib import Parallel, delayed except ImportError: from sklearn.externals.joblib import Parallel, delayed parallel = Parallel(n_jobs, verbose=verbose) my_func = delayed(func) if n_jobs == -1: try: import multiprocessing n_jobs = multiprocessing.cpu_count() except (ImportError, NotImplementedError): import warnings warnings.warn(module_unavailable_doc.format('multiprocessing'), ModuleUnavailableWarning) n_jobs = 1 except ImportError: import warnings warnings.warn(module_unavailable_doc.format('joblib'), ModuleUnavailableWarning) n_jobs = 1 my_func = func parallel = list return parallel, my_func, n_jobs