# -*- coding: utf-8 -*- from __future__ import annotations from statsmodels.compat.pandas import ( Appender, Substitution, call_cached_func, to_numpy, ) from collections.abc import Iterable import datetime as dt from types import SimpleNamespace from typing import List, Tuple import warnings import numpy as np import pandas as pd from scipy.stats import gaussian_kde, norm import statsmodels.base.wrapper as wrap from statsmodels.iolib.summary import Summary from statsmodels.regression.linear_model import OLS from statsmodels.tools import eval_measures from statsmodels.tools.decorators import cache_readonly, cache_writable from statsmodels.tools.docstring import Docstring, remove_parameters from statsmodels.tools.sm_exceptions import SpecificationWarning from statsmodels.tools.validation import ( array_like, bool_like, int_like, string_like, ) from statsmodels.tsa.arima_process import arma2ma from statsmodels.tsa.base import tsa_model from statsmodels.tsa.base.prediction import PredictionResults from statsmodels.tsa.deterministic import ( DeterministicProcess, Seasonality, TimeTrend, ) from statsmodels.tsa.tsatools import freq_to_period, lagmat __all__ = ["AR", "AutoReg"] AR_DEPRECATION_WARN = """ statsmodels.tsa.AR has been deprecated in favor of statsmodels.tsa.AutoReg and statsmodels.tsa.SARIMAX. AutoReg adds the ability to specify exogenous variables, include time trends, and add seasonal dummies. The AutoReg API differs from AR since the model is treated as immutable, and so the entire specification including the lag length must be specified when creating the model. This change is too substantial to incorporate into the existing AR api. The function ar_select_order performs lag length selection for AutoReg models. AutoReg only estimates parameters using conditional MLE (OLS). Use SARIMAX to estimate ARX and related models using full MLE via the Kalman Filter. To silence this warning and continue using AR until it is removed, use: import warnings warnings.filterwarnings('ignore', 'statsmodels.tsa.ar_model.AR', FutureWarning) """ REPEATED_FIT_ERROR = """ Model has been fit using maxlag={0}, method={1}, ic={2}, trend={3}. These cannot be changed in subsequent calls to `fit`. Instead, use a new instance of AR. """ def sumofsq(x, axis=0): """Helper function to calculate sum of squares along first axis""" return np.sum(x ** 2, axis=axis) def _get_period(data, index_freq): """Shared helper to get period from frequenc or raise""" if data.freq: return freq_to_period(index_freq) raise ValueError( "freq cannot be inferred from endog and model includes seasonal " "terms. The number of periods must be explicitly set when the " "endog's index does not contain a frequency." ) class AutoReg(tsa_model.TimeSeriesModel): """ Autoregressive AR-X(p) model Estimate an AR-X model using Conditional Maximum Likelihood (OLS). Parameters ---------- endog : array_like A 1-d endogenous response variable. The dependent variable. lags : {None, int, list[int]} The number of lags to include in the model if an integer or the list of lag indices to include. For example, [1, 4] will only include lags 1 and 4 while lags=4 will include lags 1, 2, 3, and 4. None excludes all AR lags, and behave identically to 0. trend : {'n', 'c', 't', 'ct'} The trend to include in the model: * 'n' - No trend. * 'c' - Constant only. * 't' - Time trend only. * 'ct' - Constant and time trend. seasonal : bool Flag indicating whether to include seasonal dummies in the model. If seasonal is True and trend includes 'c', then the first period is excluded from the seasonal terms. exog : array_like, optional Exogenous variables to include in the model. Must have the same number of observations as endog and should be aligned so that endog[i] is regressed on exog[i]. hold_back : {None, int} Initial observations to exclude from the estimation sample. If None, then hold_back is equal to the maximum lag in the model. Set to a non-zero value to produce comparable models with different lag length. For example, to compare the fit of a model with lags=3 and lags=1, set hold_back=3 which ensures that both models are estimated using observations 3,...,nobs. hold_back must be >= the maximum lag in the model. period : {None, int} The period of the data. Only used if seasonal is True. This parameter can be omitted if using a pandas object for endog that contains a recognized frequency. missing : str Available options are 'none', 'drop', and 'raise'. If 'none', no nan checking is done. If 'drop', any observations with nans are dropped. If 'raise', an error is raised. Default is 'none'. deterministic : DeterministicProcess A deterministic process. If provided, trend and seasonal are ignored. A warning is raised if trend is not "n" and seasonal is not False. old_names : bool Flag indicating whether to use the v0.11 names or the v0.12+ names. .. deprecated:: 0.13 old_names is deprecated and will be removed after 0.14 is released. You must update any code reliant on the old variable names to use the new names. See Also -------- statsmodels.tsa.statespace.sarimax.SARIMAX Estimation of SARIMAX models using exact likelihood and the Kalman Filter. Examples -------- >>> import statsmodels.api as sm >>> from statsmodels.tsa.ar_model import AutoReg >>> data = sm.datasets.sunspots.load_pandas().data['SUNACTIVITY'] >>> out = 'AIC: {0:0.3f}, HQIC: {1:0.3f}, BIC: {2:0.3f}' Start by fitting an unrestricted Seasonal AR model >>> res = AutoReg(data, lags = [1, 11, 12]).fit() >>> print(out.format(res.aic, res.hqic, res.bic)) AIC: 5.945, HQIC: 5.970, BIC: 6.007 An alternative used seasonal dummies >>> res = AutoReg(data, lags=1, seasonal=True, period=11).fit() >>> print(out.format(res.aic, res.hqic, res.bic)) AIC: 6.017, HQIC: 6.080, BIC: 6.175 Finally, both the seasonal AR structure and dummies can be included >>> res = AutoReg(data, lags=[1, 11, 12], seasonal=True, period=11).fit() >>> print(out.format(res.aic, res.hqic, res.bic)) AIC: 5.884, HQIC: 5.959, BIC: 6.071 """ def __init__( self, endog, lags, trend="c", seasonal=False, exog=None, hold_back=None, period=None, missing="none", *, deterministic=None, old_names=False, ): super().__init__(endog, exog, None, None, missing=missing) self._trend = string_like( trend, "trend", options=("n", "c", "t", "ct"), optional=False ) self._seasonal = bool_like(seasonal, "seasonal") self._period = int_like(period, "period", optional=True) if self._period is None and self._seasonal: self._period = _get_period(self.data, self._index_freq) terms = [TimeTrend.from_string(self._trend)] if seasonal: terms.append(Seasonality(self._period)) if hasattr(self.data.orig_endog, "index"): index = self.data.orig_endog.index else: index = np.arange(self.data.endog.shape[0]) self._user_deterministic = False if deterministic is not None: if not isinstance(deterministic, DeterministicProcess): raise TypeError("deterministic must be a DeterministicProcess") self._deterministics = deterministic self._user_deterministic = True else: self._deterministics = DeterministicProcess( index, additional_terms=terms ) self._lags = lags self._exog_names = [] self._k_ar = 0 self._hold_back = int_like(hold_back, "hold_back", optional=True) self._old_names = bool_like(old_names, "old_names", optional=False) if deterministic is not None and ( self._trend != "n" or self._seasonal ): warnings.warn( 'When using deterministic, trend must be "n" and ' "seasonal must be False.", SpecificationWarning, ) if self._old_names: warnings.warn( "old_names will be removed after the 0.14 release. You should " "stop setting this parameter and use the new names.", FutureWarning, ) self._lags, self._hold_back = self._check_lags() self._setup_regressors() self.nobs = self._y.shape[0] self.data.xnames = self.exog_names @property def ar_lags(self): """The autoregressive lags included in the model""" lags = list(self._lags) return None if not lags else lags @property def hold_back(self): """The number of initial obs. excluded from the estimation sample.""" return self._hold_back @property def trend(self): """The trend used in the model.""" return self._trend @property def seasonal(self): """Flag indicating that the model contains a seasonal component.""" return self._seasonal @property def deterministic(self): """The deterministic used to construct the model""" return self._deterministics if self._user_deterministic else None @property def period(self): """The period of the seasonal component.""" return self._period @property def df_model(self): """The model degrees of freedom.""" return self._x.shape[1] @property def exog_names(self): """Names of exogenous variables included in model""" return self._exog_names def initialize(self): """Initialize the model (no-op).""" pass def _check_lags(self) -> Tuple[List[int], int]: lags = self._lags if lags is None: lags = [] self._maxlag = 0 elif isinstance(lags, Iterable): lags = np.array(sorted([int_like(lag, "lags") for lag in lags])) if np.any(lags < 1) or np.unique(lags).shape[0] != lags.shape[0]: raise ValueError( "All values in lags must be positive and distinct." ) self._maxlag = np.max(lags) else: self._maxlag = int_like(lags, "lags") if self._maxlag < 0: raise ValueError("lags must be a non-negative scalar.") lags = np.arange(1, self._maxlag + 1) hold_back = self._hold_back if hold_back is None: hold_back = self._maxlag if hold_back < self._maxlag: raise ValueError( "hold_back must be >= lags if lags is an int or" "max(lags) if lags is array_like." ) return list(lags), int(hold_back) def _setup_regressors(self): maxlag = self._maxlag hold_back = self._hold_back exog_names = [] endog_names = self.endog_names x, y = lagmat(self.endog, maxlag, original="sep") exog_names.extend( [endog_names + ".L{0}".format(lag) for lag in self._lags] ) if len(self._lags) < maxlag: x = x[:, np.asarray(self._lags) - 1] self._k_ar = x.shape[1] deterministic = self._deterministics.in_sample() if deterministic.shape[1]: x = np.c_[to_numpy(deterministic), x] if self._old_names: deterministic_names = [] if "c" in self._trend: deterministic_names.append("intercept") if "t" in self._trend: deterministic_names.append("trend") if self._seasonal: period = self._period names = ["seasonal.{0}".format(i) for i in range(period)] if "c" in self._trend: names = names[1:] deterministic_names.extend(names) else: deterministic_names = list(deterministic.columns) exog_names = deterministic_names + exog_names if self.exog is not None: x = np.c_[x, self.exog] exog_names.extend(self.data.param_names) y = y[hold_back:] x = x[hold_back:] if y.shape[0] < x.shape[1]: reg = x.shape[1] period = self._period trend = 0 if self._trend == "n" else len(self._trend) seas = 0 if not self._seasonal else period - ("c" in self._trend) lags = len(self._lags) nobs = y.shape[0] raise ValueError( "The model specification cannot be estimated. " f"The model contains {reg} regressors ({trend} trend, " f"{seas} seasonal, {lags} lags) but after adjustment " "for hold_back and creation of the lags, there " f"are only {nobs} data points available to estimate " "parameters." ) self._y, self._x = y, x self._exog_names = exog_names def fit(self, cov_type="nonrobust", cov_kwds=None, use_t=False): """ Estimate the model parameters. Parameters ---------- cov_type : str The covariance estimator to use. The most common choices are listed below. Supports all covariance estimators that are available in ``OLS.fit``. * 'nonrobust' - The class OLS covariance estimator that assumes homoskedasticity. * 'HC0', 'HC1', 'HC2', 'HC3' - Variants of White's (or Eiker-Huber-White) covariance estimator. `HC0` is the standard implementation. The other make corrections to improve the finite sample performance of the heteroskedasticity robust covariance estimator. * 'HAC' - Heteroskedasticity-autocorrelation robust covariance estimation. Supports cov_kwds. - `maxlags` integer (required) : number of lags to use. - `kernel` callable or str (optional) : kernel currently available kernels are ['bartlett', 'uniform'], default is Bartlett. - `use_correction` bool (optional) : If true, use small sample correction. cov_kwds : dict, optional A dictionary of keyword arguments to pass to the covariance estimator. `nonrobust` and `HC#` do not support cov_kwds. use_t : bool, optional A flag indicating that inference should use the Student's t distribution that accounts for model degree of freedom. If False, uses the normal distribution. If None, defers the choice to the cov_type. It also removes degree of freedom corrections from the covariance estimator when cov_type is 'nonrobust'. Returns ------- AutoRegResults Estimation results. See Also -------- statsmodels.regression.linear_model.OLS Ordinary Least Squares estimation. statsmodels.regression.linear_model.RegressionResults See ``get_robustcov_results`` for a detailed list of available covariance estimators and options. Notes ----- Use ``OLS`` to estimate model parameters and to estimate parameter covariance. """ # TODO: Determine correction for degree-of-freedom # Special case parameterless model if self._x.shape[1] == 0: return AutoRegResultsWrapper( AutoRegResults(self, np.empty(0), np.empty((0, 0))) ) ols_mod = OLS(self._y, self._x) ols_res = ols_mod.fit( cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t ) cov_params = ols_res.cov_params() use_t = ols_res.use_t if cov_type == "nonrobust" and not use_t: nobs = self._y.shape[0] k = self._x.shape[1] scale = nobs / (nobs - k) cov_params /= scale res = AutoRegResults( self, ols_res.params, cov_params, ols_res.normalized_cov_params, use_t=use_t, ) return AutoRegResultsWrapper(res) def _resid(self, params): params = array_like(params, "params", ndim=2) return self._y.squeeze() - (self._x @ params).squeeze() def loglike(self, params): """ Log-likelihood of model. Parameters ---------- params : ndarray The model parameters used to compute the log-likelihood. Returns ------- float The log-likelihood value. """ nobs = self.nobs resid = self._resid(params) ssr = resid @ resid llf = -(nobs / 2) * (np.log(2 * np.pi) + np.log(ssr / nobs) + 1) return llf def score(self, params): """ Score vector of model. The gradient of logL with respect to each parameter. Parameters ---------- params : ndarray The parameters to use when evaluating the Hessian. Returns ------- ndarray The score vector evaluated at the parameters. """ resid = self._resid(params) return self._x.T @ resid def information(self, params): """ Fisher information matrix of model. Returns -1 * Hessian of the log-likelihood evaluated at params. Parameters ---------- params : ndarray The model parameters. Returns ------- ndarray The information matrix. """ resid = self._resid(params) sigma2 = resid @ resid / self.nobs return (self._x.T @ self._x) * (1 / sigma2) def hessian(self, params): """ The Hessian matrix of the model. Parameters ---------- params : ndarray The parameters to use when evaluating the Hessian. Returns ------- ndarray The hessian evaluated at the parameters. """ return -self.information(params) def _setup_oos_forecast(self, add_forecasts, exog_oos): x = np.zeros((add_forecasts, self._x.shape[1])) oos_exog = self._deterministics.out_of_sample(steps=add_forecasts) n_deterministic = oos_exog.shape[1] x[:, :n_deterministic] = to_numpy(oos_exog) # skip the AR columns loc = n_deterministic + len(self._lags) if self.exog is not None: x[:, loc:] = exog_oos[:add_forecasts] return x def _wrap_prediction(self, prediction, start, end, pad): prediction = np.hstack([np.full(pad, np.nan), prediction]) n_values = end - start + pad if not isinstance(self.data.orig_endog, (pd.Series, pd.DataFrame)): return prediction[-n_values:] index = self._index if end > self.endog.shape[0]: freq = getattr(index, "freq", None) if freq: if isinstance(index, pd.PeriodIndex): index = pd.period_range(index[0], freq=freq, periods=end) else: index = pd.date_range(index[0], freq=freq, periods=end) else: index = pd.RangeIndex(end) index = index[start - pad : end] prediction = prediction[-n_values:] return pd.Series(prediction, index=index) def _dynamic_predict( self, params, start, end, dynamic, num_oos, exog, exog_oos ): """ :param params: :param start: :param end: :param dynamic: :param num_oos: :param exog: :param exog_oos: :return: """ reg = [] hold_back = self._hold_back adj = 0 if start < hold_back: # Adjust start and dynamic adj = hold_back - start start += adj # New offset shifts, but must remain non-negative dynamic = max(dynamic - adj, 0) if (start - hold_back) <= self.nobs: # _x is missing hold_back observations, which is why # it is shifted by this amount is_loc = slice(start - hold_back, end + 1 - hold_back) x = self._x[is_loc] if exog is not None: x = x.copy() # Replace final columns x[:, -exog.shape[1] :] = exog[start : end + 1] reg.append(x) if num_oos > 0: reg.append(self._setup_oos_forecast(num_oos, exog_oos)) reg = np.vstack(reg) det_col_idx = self._x.shape[1] - len(self._lags) det_col_idx -= 0 if self.exog is None else self.exog.shape[1] # Simple 1-step static forecasts for dynamic observations forecasts = np.empty(reg.shape[0]) forecasts[:dynamic] = reg[:dynamic] @ params for h in range(dynamic, reg.shape[0]): # Fill in regressor matrix for j, lag in enumerate(self._lags): fcast_loc = h - lag if fcast_loc >= dynamic: val = forecasts[fcast_loc] else: # If before the start of the forecasts, use actual values val = self.endog[fcast_loc + start] reg[h, det_col_idx + j] = val forecasts[h] = reg[h : h + 1] @ params return self._wrap_prediction(forecasts, start, end + 1 + num_oos, adj) def _static_oos_predict(self, params, num_oos, exog_oos): new_x = self._setup_oos_forecast(num_oos, exog_oos) if self._maxlag == 0: return new_x @ params forecasts = np.empty(num_oos) nexog = 0 if self.exog is None else self.exog.shape[1] ar_offset = self._x.shape[1] - nexog - len(self._lags) for i in range(num_oos): for j, lag in enumerate(self._lags): loc = i - lag val = self._y[loc] if loc < 0 else forecasts[loc] new_x[i, ar_offset + j] = val forecasts[i] = new_x[i : i + 1] @ params return forecasts def _static_predict(self, params, start, end, num_oos, exog, exog_oos): """ Path for static predictions Parameters ---------- start : int Index of first observation end : int Index of last in-sample observation. Inclusive, so start:end+1 in slice notation. num_oos : int Number of out-of-sample observations, so that the returned size is num_oos + (end - start + 1). exog : ndarray Array containing replacement exog values exog_oos : ndarray Containing forecast exog values """ hold_back = self._hold_back nobs = self.endog.shape[0] x = np.empty((0, self._x.shape[1])) # Adjust start to reflect observations lost adj = max(0, hold_back - start) start += adj if start <= nobs: # Use existing regressors is_loc = slice(start - hold_back, end + 1 - hold_back) x = self._x[is_loc] if exog is not None: x = x.copy() # Replace final columns x[:, -exog.shape[1] :] = exog[start : end + 1] in_sample = x @ params if num_oos == 0: # No out of sample return self._wrap_prediction(in_sample, start, end + 1, adj) out_of_sample = self._static_oos_predict(params, num_oos, exog_oos) prediction = np.hstack((in_sample, out_of_sample)) return self._wrap_prediction(prediction, start, end + 1 + num_oos, adj) def _prepare_prediction(self, params, exog, exog_oos, start, end): params = array_like(params, "params") if not isinstance(exog, pd.DataFrame): exog = array_like(exog, "exog", ndim=2, optional=True) if not isinstance(exog_oos, pd.DataFrame): exog_oos = array_like(exog_oos, "exog_oos", ndim=2, optional=True) start = 0 if start is None else start end = self._index[-1] if end is None else end start, end, num_oos, _ = self._get_prediction_index(start, end) return params, exog, exog_oos, start, end, num_oos def _parse_dynamic(self, dynamic, start): if isinstance( dynamic, (str, bytes, pd.Timestamp, dt.datetime, pd.Period) ): dynamic_loc, _, _ = self._get_index_loc(dynamic) # Adjust since relative to start dynamic_loc -= start elif dynamic is True: # if True, all forecasts are dynamic dynamic_loc = 0 else: dynamic_loc = int(dynamic) # At this point dynamic is an offset relative to start # and it must be non-negative if dynamic_loc < 0: raise ValueError( "Dynamic prediction cannot begin prior to the " "first observation in the sample." ) return dynamic_loc def predict( self, params, start=None, end=None, dynamic=False, exog=None, exog_oos=None, ): """ In-sample prediction and out-of-sample forecasting. Parameters ---------- params : array_like The fitted model parameters. start : int, str, or datetime, optional Zero-indexed observation number at which to start forecasting, i.e., the first forecast is start. Can also be a date string to parse or a datetime type. Default is the the zeroth observation. end : int, str, or datetime, optional Zero-indexed observation number at which to end forecasting, i.e., the last forecast is end. Can also be a date string to parse or a datetime type. However, if the dates index does not have a fixed frequency, end must be an integer index if you want out-of-sample prediction. Default is the last observation in the sample. Unlike standard python slices, end is inclusive so that all the predictions [start, start+1, ..., end-1, end] are returned. dynamic : {bool, int, str, datetime, Timestamp}, optional Integer offset relative to `start` at which to begin dynamic prediction. Prior to this observation, true endogenous values will be used for prediction; starting with this observation and continuing through the end of prediction, forecasted endogenous values will be used instead. Datetime-like objects are not interpreted as offsets. They are instead used to find the index location of `dynamic` which is then used to to compute the offset. exog : array_like A replacement exogenous array. Must have the same shape as the exogenous data array used when the model was created. exog_oos : array_like An array containing out-of-sample values of the exogenous variable. Must has the same number of columns as the exog used when the model was created, and at least as many rows as the number of out-of-sample forecasts. Returns ------- predictions : {ndarray, Series} Array of out of in-sample predictions and / or out-of-sample forecasts. """ params, exog, exog_oos, start, end, num_oos = self._prepare_prediction( params, exog, exog_oos, start, end ) if self.exog is None and (exog is not None or exog_oos is not None): raise ValueError( "exog and exog_oos cannot be used when the model " "does not contains exogenous regressors." ) elif self.exog is not None: if exog is not None and exog.shape != self.exog.shape: msg = ( "The shape of exog {0} must match the shape of the " "exog variable used to create the model {1}." ) raise ValueError(msg.format(exog.shape, self.exog.shape)) if ( exog_oos is not None and exog_oos.shape[1] != self.exog.shape[1] ): msg = ( "The number of columns in exog_oos ({0}) must match " "the number of columns in the exog variable used to " "create the model ({1})." ) raise ValueError( msg.format(exog_oos.shape[1], self.exog.shape[1]) ) if num_oos > 0 and exog_oos is None: raise ValueError( "exog_oos must be provided when producing " "out-of-sample forecasts." ) elif exog_oos is not None and num_oos > exog_oos.shape[0]: msg = ( "start and end indicate that {0} out-of-sample " "predictions must be computed. exog_oos has {1} rows " "but must have at least {0}." ) raise ValueError(msg.format(num_oos, exog_oos.shape[0])) if (isinstance(dynamic, bool) and not dynamic) or self._maxlag == 0: # If model has no lags, static and dynamic are identical return self._static_predict( params, start, end, num_oos, exog, exog_oos ) dynamic = self._parse_dynamic(dynamic, start) return self._dynamic_predict( params, start, end, dynamic, num_oos, exog, exog_oos ) class AR: """ The AR class has been removed and replaced with AutoReg See Also -------- AutoReg The replacement for AR that improved deterministic modeling """ def __init__(self, *args, **kwargs): raise NotImplementedError( "AR has been removed from statsmodels and replaced with " "statsmodels.tsa.ar_model.AutoReg." ) class ARResults: """ Removed and replaced by AutoRegResults. See Also -------- AutoReg """ def __init__(self, *args, **kwargs): raise NotImplementedError( "AR and ARResults have been removed and replaced by " "AutoReg And AutoRegResults." ) doc = Docstring(AutoReg.predict.__doc__) _predict_params = doc.extract_parameters( ["start", "end", "dynamic", "exog", "exog_oos"], 8 ) class AutoRegResults(tsa_model.TimeSeriesModelResults): """ Class to hold results from fitting an AutoReg model. Parameters ---------- model : AutoReg Reference to the model that is fit. params : ndarray The fitted parameters from the AR Model. cov_params : ndarray The estimated covariance matrix of the model parameters. normalized_cov_params : ndarray The array inv(dot(x.T,x)) where x contains the regressors in the model. scale : float, optional An estimate of the scale of the model. use_t : bool, optional Whether use_t was set in fit """ _cache = {} # for scale setter def __init__( self, model, params, cov_params, normalized_cov_params=None, scale=1.0, use_t=False, ): super().__init__(model, params, normalized_cov_params, scale) self._cache = {} self._params = params self._nobs = model.nobs self._n_totobs = model.endog.shape[0] self._df_model = model.df_model self._ar_lags = model.ar_lags self._use_t = use_t if self._ar_lags is not None: self._max_lag = max(self._ar_lags) else: self._max_lag = 0 self._hold_back = self.model.hold_back self.cov_params_default = cov_params def initialize(self, model, params, **kwargs): """ Initialize (possibly re-initialize) a Results instance. Parameters ---------- model : Model The model instance. params : ndarray The model parameters. **kwargs Any additional keyword arguments required to initialize the model. """ self._params = params self.model = model @property def ar_lags(self): """The autoregressive lags included in the model""" return self._ar_lags @property def params(self): """The estimated parameters.""" return self._params @property def df_model(self): """The degrees of freedom consumed by the model.""" return self._df_model @property def df_resid(self): """The remaining degrees of freedom in the residuals.""" return self.nobs - self._df_model @property def nobs(self): """ The number of observations after adjusting for losses due to lags. """ return self._nobs @cache_writable() def sigma2(self): return 1.0 / self.nobs * sumofsq(self.resid) @cache_writable() # for compatability with RegressionResults def scale(self): return self.sigma2 @cache_readonly def bse(self): # allow user to specify? """ The standard errors of the estimated parameters. If `method` is 'cmle', then the standard errors that are returned are the OLS standard errors of the coefficients. If the `method` is 'mle' then they are computed using the numerical Hessian. """ return np.sqrt(np.diag(self.cov_params())) @cache_readonly def aic(self): r""" Akaike Information Criterion using Lutkepohl's definition. :math:`-2 llf + \ln(nobs) (1 + df_{model})` """ # This is based on loglike with dropped constant terms ? # Lutkepohl # return np.log(self.sigma2) + 1./self.model.nobs * self.k_ar # Include constant as estimated free parameter and double the loss # Stata defintion # nobs = self.nobs # return -2 * self.llf/nobs + 2 * (self.k_ar+self.k_trend)/nobs return eval_measures.aic(self.llf, self.nobs, self.df_model + 1) @cache_readonly def hqic(self): r""" Hannan-Quinn Information Criterion using Lutkepohl's definition. :math:`-2 llf + 2 \ln(\ln(nobs)) (1 + df_{model})` """ # Lutkepohl # return np.log(self.sigma2)+ 2 * np.log(np.log(nobs))/nobs * self.k_ar # R uses all estimated parameters rather than just lags # Stata # nobs = self.nobs # return -2 * self.llf/nobs + 2 * np.log(np.log(nobs))/nobs * \ # (self.k_ar + self.k_trend) return eval_measures.hqic(self.llf, self.nobs, self.df_model + 1) @cache_readonly def fpe(self): r""" Final prediction error using Lütkepohl's definition. :math:`((nobs+df_{model})/(nobs-df_{model})) \sigma^2` """ nobs = self.nobs df_model = self.df_model # Lutkepohl return self.sigma2 * ((nobs + df_model) / (nobs - df_model)) @cache_readonly def aicc(self): r""" Akaike Information Criterion with small sample correction :math:`2.0 * df_{model} * nobs / (nobs - df_{model} - 1.0)` """ return eval_measures.aicc(self.llf, self.nobs, self.df_model + 1) @cache_readonly def bic(self): r""" Bayes Information Criterion :math:`-2 llf + \ln(nobs) (1 + df_{model})` """ # Lutkepohl # np.log(self.sigma2) + np.log(nobs)/nobs * self.k_ar # Include constant as est. free parameter # Stata # -2 * self.llf/nobs + np.log(nobs)/nobs * (self.k_ar + self.k_trend) return eval_measures.bic(self.llf, self.nobs, self.df_model + 1) @cache_readonly def resid(self): """ The residuals of the model. """ model = self.model endog = model.endog.squeeze() return endog[self._hold_back :] - self.fittedvalues def _lag_repr(self): """Returns poly repr of an AR, (1 -phi1 L -phi2 L^2-...)""" ar_lags = self._ar_lags if self._ar_lags is not None else [] k_ar = len(ar_lags) ar_params = np.zeros(self._max_lag + 1) ar_params[0] = 1 df_model = self._df_model exog = self.model.exog k_exog = exog.shape[1] if exog is not None else 0 params = self._params[df_model - k_ar - k_exog : df_model - k_exog] for i, lag in enumerate(ar_lags): ar_params[lag] = -params[i] return ar_params @cache_readonly def roots(self): """ The roots of the AR process. The roots are the solution to (1 - arparams[0]*z - arparams[1]*z**2 -...- arparams[p-1]*z**k_ar) = 0. Stability requires that the roots in modulus lie outside the unit circle. """ # TODO: Specific to AR lag_repr = self._lag_repr() if lag_repr.shape[0] == 1: return np.empty(0) return np.roots(lag_repr) ** -1 @cache_readonly def arfreq(self): r""" Returns the frequency of the AR roots. This is the solution, x, to z = abs(z)*exp(2j*np.pi*x) where z are the roots. """ # TODO: Specific to AR z = self.roots return np.arctan2(z.imag, z.real) / (2 * np.pi) @cache_readonly def fittedvalues(self): """ The in-sample predicted values of the fitted AR model. The `k_ar` initial values are computed via the Kalman Filter if the model is fit by `mle`. """ return self.model.predict(self.params)[self._hold_back :] def test_serial_correlation(self, lags=None, model_df=None): """ Ljung-Box test for residual serial correlation Parameters ---------- lags : int The maximum number of lags to use in the test. Jointly tests that all autocorrelations up to and including lag j are zero for j = 1, 2, ..., lags. If None, uses lag=12*(nobs/100)^{1/4}. After 0.12 the number of lags will change to min(10, nobs // 5). model_df : int The model degree of freedom to use when adjusting computing the test statistic to account for parameter estimation. If None, uses the number of AR lags included in the model. Returns ------- output : DataFrame DataFrame containing three columns: the test statistic, the p-value of the test, and the degree of freedom used in the test. Notes ----- Null hypothesis is no serial correlation. The the test degree-of-freedom is 0 or negative once accounting for model_df, then the test statistic's p-value is missing. See Also -------- statsmodels.stats.diagnostic.acorr_ljungbox Ljung-Box test for serial correlation. """ # Deferred to prevent circular import from statsmodels.stats.diagnostic import acorr_ljungbox lags = int_like(lags, "lags", optional=True) model_df = int_like(model_df, "df_model", optional=True) model_df = self.df_model if model_df is None else model_df nobs_effective = self.resid.shape[0] if lags is None: lags = min(nobs_effective // 5, 10) test_stats = acorr_ljungbox( self.resid, lags=lags, boxpierce=False, model_df=model_df, return_df=False, ) cols = ["Ljung-Box", "LB P-value", "DF"] if lags == 1: test_stats = [list(test_stats) + [max(0, 1 - model_df)]] else: df = np.clip(np.arange(1, lags + 1) - model_df, 0, np.inf).astype( int ) test_stats = list(test_stats) + [df] test_stats = [ [test_stats[i][j] for i in range(3)] for j in range(lags) ] index = pd.RangeIndex(1, lags + 1, name="Lag") return pd.DataFrame(test_stats, columns=cols, index=index) def test_normality(self): """ Test for normality of standardized residuals. Returns ------- Series Series containing four values, the test statistic and its p-value, the skewness and the kurtosis. Notes ----- Null hypothesis is normality. See Also -------- statsmodels.stats.stattools.jarque_bera The Jarque-Bera test of normality. """ # Deferred to prevent circular import from statsmodels.stats.stattools import jarque_bera index = ["Jarque-Bera", "P-value", "Skewness", "Kurtosis"] return pd.Series(jarque_bera(self.resid), index=index) def test_heteroskedasticity(self, lags=None): """ ARCH-LM test of residual heteroskedasticity Parameters ---------- lags : int The maximum number of lags to use in the test. Jointly tests that all squared autocorrelations up to and including lag j are zero for j = 1, 2, ..., lags. If None, uses lag=12*(nobs/100)^{1/4}. Returns ------- Series Series containing the test statistic and its p-values. See Also -------- statsmodels.stats.diagnostic.het_arch ARCH-LM test. statsmodels.stats.diagnostic.acorr_lm LM test for autocorrelation. """ from statsmodels.stats.diagnostic import het_arch lags = int_like(lags, "lags", optional=True) nobs_effective = self.resid.shape[0] if lags is None: lags = min(nobs_effective // 5, 10) out = [] for lag in range(1, lags + 1): res = het_arch(self.resid, nlags=lag, autolag=None) out.append([res[0], res[1], lag]) index = pd.RangeIndex(1, lags + 1, name="Lag") cols = ["ARCH-LM", "P-value", "DF"] return pd.DataFrame(out, columns=cols, index=index) def diagnostic_summary(self): """ Returns a summary containing standard model diagnostic tests Returns ------- Summary A summary instance with panels for serial correlation tests, normality tests and heteroskedasticity tests. See Also -------- test_serial_correlation Test models residuals for serial correlation. test_normality Test models residuals for deviations from normality. test_heteroskedasticity Test models residuals for conditional heteroskedasticity. """ from statsmodels.iolib.table import SimpleTable spacer = SimpleTable([""]) smry = Summary() sc = self.test_serial_correlation() sc = sc.loc[sc.DF > 0] values = [[i + 1] + row for i, row in enumerate(sc.values.tolist())] data_fmts = ("%10d", "%10.3f", "%10.3f", "%10d") if sc.shape[0]: tab = SimpleTable( values, headers=["Lag"] + list(sc.columns), title="Test of No Serial Correlation", header_align="r", data_fmts=data_fmts, ) smry.tables.append(tab) smry.tables.append(spacer) jb = self.test_normality() data_fmts = ("%10.3f", "%10.3f", "%10.3f", "%10.3f") tab = SimpleTable( [jb.values], headers=list(jb.index), title="Test of Normality", header_align="r", data_fmts=data_fmts, ) smry.tables.append(tab) smry.tables.append(spacer) arch_lm = self.test_heteroskedasticity() values = [ [i + 1] + row for i, row in enumerate(arch_lm.values.tolist()) ] data_fmts = ("%10d", "%10.3f", "%10.3f", "%10d") tab = SimpleTable( values, headers=["Lag"] + list(arch_lm.columns), title="Test of Conditional Homoskedasticity", header_align="r", data_fmts=data_fmts, ) smry.tables.append(tab) return smry @Appender(remove_parameters(AutoReg.predict.__doc__, "params")) def predict( self, start=None, end=None, dynamic=False, exog=None, exog_oos=None ): return self.model.predict( self._params, start=start, end=end, dynamic=dynamic, exog=exog, exog_oos=exog_oos, ) def get_prediction( self, start=None, end=None, dynamic=False, exog=None, exog_oos=None ): """ Predictions and prediction intervals Parameters ---------- start : int, str, or datetime, optional Zero-indexed observation number at which to start forecasting, i.e., the first forecast is start. Can also be a date string to parse or a datetime type. Default is the the zeroth observation. end : int, str, or datetime, optional Zero-indexed observation number at which to end forecasting, i.e., the last forecast is end. Can also be a date string to parse or a datetime type. However, if the dates index does not have a fixed frequency, end must be an integer index if you want out-of-sample prediction. Default is the last observation in the sample. Unlike standard python slices, end is inclusive so that all the predictions [start, start+1, ..., end-1, end] are returned. dynamic : {bool, int, str, datetime, Timestamp}, optional Integer offset relative to `start` at which to begin dynamic prediction. Prior to this observation, true endogenous values will be used for prediction; starting with this observation and continuing through the end of prediction, forecasted endogenous values will be used instead. Datetime-like objects are not interpreted as offsets. They are instead used to find the index location of `dynamic` which is then used to to compute the offset. exog : array_like A replacement exogenous array. Must have the same shape as the exogenous data array used when the model was created. exog_oos : array_like An array containing out-of-sample values of the exogenous variable. Must has the same number of columns as the exog used when the model was created, and at least as many rows as the number of out-of-sample forecasts. Returns ------- PredictionResults Prediction results with mean and prediction intervals """ mean = self.predict( start=start, end=end, dynamic=dynamic, exog=exog, exog_oos=exog_oos ) mean_var = np.full_like(mean, self.sigma2) mean_var[np.isnan(mean)] = np.nan start = 0 if start is None else start end = self.model._index[-1] if end is None else end _, _, oos, _ = self.model._get_prediction_index(start, end) if oos > 0: ar_params = self._lag_repr() ma = arma2ma(ar_params, np.ones(1), lags=oos) mean_var[-oos:] = self.sigma2 * np.cumsum(ma ** 2) if isinstance(mean, pd.Series): mean_var = pd.Series(mean_var, index=mean.index) return PredictionResults(mean, mean_var) def forecast(self, steps=1, exog=None): """ Out-of-sample forecasts Parameters ---------- steps : {int, str, datetime}, default 1 If an integer, the number of steps to forecast from the end of the sample. Can also be a date string to parse or a datetime type. However, if the dates index does not have a fixed frequency, steps must be an integer. exog : {ndarray, DataFrame} Exogenous values to use out-of-sample. Must have same number of columns as original exog data and at least `steps` rows Returns ------- array_like Array of out of in-sample predictions and / or out-of-sample forecasts. See Also -------- AutoRegResults.predict In- and out-of-sample predictions AutoRegResults.get_prediction In- and out-of-sample predictions and confidence intervals """ start = self.model.data.orig_endog.shape[0] if isinstance(steps, (int, np.integer)): end = start + steps - 1 else: end = steps return self.predict(start=start, end=end, dynamic=False, exog_oos=exog) def _plot_predictions( self, predictions, start, end, alpha, in_sample, fig, figsize, ): """Shared helper for plotting predictions""" from statsmodels.graphics.utils import _import_mpl, create_mpl_fig _import_mpl() fig = create_mpl_fig(fig, figsize) start = 0 if start is None else start end = self.model._index[-1] if end is None else end _, _, oos, _ = self.model._get_prediction_index(start, end) ax = fig.add_subplot(111) mean = predictions.predicted_mean if not in_sample and oos: if isinstance(mean, pd.Series): mean = mean.iloc[-oos:] elif not in_sample: raise ValueError( "in_sample is False but there are no" "out-of-sample forecasts to plot." ) ax.plot(mean, zorder=2) if oos and alpha is not None: ci = np.asarray(predictions.conf_int(alpha)) lower, upper = ci[-oos:, 0], ci[-oos:, 1] label = "{0:.0%} confidence interval".format(1 - alpha) x = ax.get_lines()[-1].get_xdata() ax.fill_between( x[-oos:], lower, upper, color="gray", alpha=0.5, label=label, zorder=1, ) ax.legend(loc="best") return fig @Substitution(predict_params=_predict_params) def plot_predict( self, start=None, end=None, dynamic=False, exog=None, exog_oos=None, alpha=0.05, in_sample=True, fig=None, figsize=None, ): """ Plot in- and out-of-sample predictions Parameters ---------- %(predict_params)s alpha : {float, None} The tail probability not covered by the confidence interval. Must be in (0, 1). Confidence interval is constructed assuming normally distributed shocks. If None, figure will not show the confidence interval. in_sample : bool Flag indicating whether to include the in-sample period in the plot. fig : Figure An existing figure handle. If not provided, a new figure is created. figsize: tuple[float, float] Tuple containing the figure size values. Returns ------- Figure Figure handle containing the plot. """ predictions = self.get_prediction( start=start, end=end, dynamic=dynamic, exog=exog, exog_oos=exog_oos ) return self._plot_predictions( predictions, start, end, alpha, in_sample, fig, figsize ) def plot_diagnostics(self, lags=10, fig=None, figsize=None): """ Diagnostic plots for standardized residuals Parameters ---------- lags : int, optional Number of lags to include in the correlogram. Default is 10. fig : Figure, optional If given, subplots are created in this figure instead of in a new figure. Note that the 2x2 grid will be created in the provided figure using `fig.add_subplot()`. figsize : tuple, optional If a figure is created, this argument allows specifying a size. The tuple is (width, height). Notes ----- Produces a 2x2 plot grid with the following plots (ordered clockwise from top left): 1. Standardized residuals over time 2. Histogram plus estimated density of standardized residuals, along with a Normal(0,1) density plotted for reference. 3. Normal Q-Q plot, with Normal reference line. 4. Correlogram See Also -------- statsmodels.graphics.gofplots.qqplot statsmodels.graphics.tsaplots.plot_acf """ from statsmodels.graphics.utils import _import_mpl, create_mpl_fig _import_mpl() fig = create_mpl_fig(fig, figsize) # Eliminate residuals associated with burned or diffuse likelihoods resid = self.resid # Top-left: residuals vs time ax = fig.add_subplot(221) if hasattr(self.model.data, "dates") and self.data.dates is not None: x = self.model.data.dates._mpl_repr() x = x[self.model.hold_back :] else: hold_back = self.model.hold_back x = hold_back + np.arange(self.resid.shape[0]) std_resid = resid / np.sqrt(self.sigma2) ax.plot(x, std_resid) ax.hlines(0, x[0], x[-1], alpha=0.5) ax.set_xlim(x[0], x[-1]) ax.set_title("Standardized residual") # Top-right: histogram, Gaussian kernel density, Normal density # Can only do histogram and Gaussian kernel density on the non-null # elements std_resid_nonmissing = std_resid[~(np.isnan(resid))] ax = fig.add_subplot(222) ax.hist(std_resid_nonmissing, density=True, label="Hist") kde = gaussian_kde(std_resid) xlim = (-1.96 * 2, 1.96 * 2) x = np.linspace(xlim[0], xlim[1]) ax.plot(x, kde(x), label="KDE") ax.plot(x, norm.pdf(x), label="N(0,1)") ax.set_xlim(xlim) ax.legend() ax.set_title("Histogram plus estimated density") # Bottom-left: QQ plot ax = fig.add_subplot(223) from statsmodels.graphics.gofplots import qqplot qqplot(std_resid, line="s", ax=ax) ax.set_title("Normal Q-Q") # Bottom-right: Correlogram ax = fig.add_subplot(224) from statsmodels.graphics.tsaplots import plot_acf plot_acf(resid, ax=ax, lags=lags) ax.set_title("Correlogram") ax.set_ylim(-1, 1) return fig def summary(self, alpha=0.05): """ Summarize the Model Parameters ---------- alpha : float, optional Significance level for the confidence intervals. Returns ------- smry : Summary instance This holds the summary table and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary """ model = self.model title = model.__class__.__name__ + " Model Results" method = "Conditional MLE" # get sample start = self._hold_back if self.data.dates is not None: dates = self.data.dates sample = [dates[start].strftime("%m-%d-%Y")] sample += ["- " + dates[-1].strftime("%m-%d-%Y")] else: sample = [str(start), str(len(self.data.orig_endog))] model = model.__class__.__name__ if self.model.seasonal: model = "Seas. " + model if self.ar_lags is not None and len(self.ar_lags) < self._max_lag: model = "Restr. " + model if self.model.exog is not None: model += "-X" order = "({0})".format(self._max_lag) dep_name = str(self.model.endog_names) top_left = [ ("Dep. Variable:", [dep_name]), ("Model:", [model + order]), ("Method:", [method]), ("Date:", None), ("Time:", None), ("Sample:", [sample[0]]), ("", [sample[1]]), ] top_right = [ ("No. Observations:", [str(len(self.model.endog))]), ("Log Likelihood", ["%#5.3f" % self.llf]), ("S.D. of innovations", ["%#5.3f" % self.sigma2 ** 0.5]), ("AIC", ["%#5.3f" % self.aic]), ("BIC", ["%#5.3f" % self.bic]), ("HQIC", ["%#5.3f" % self.hqic]), ] smry = Summary() smry.add_table_2cols( self, gleft=top_left, gright=top_right, title=title ) smry.add_table_params(self, alpha=alpha, use_t=False) # Make the roots table from statsmodels.iolib.table import SimpleTable if self._max_lag: arstubs = ["AR.%d" % i for i in range(1, self._max_lag + 1)] stubs = arstubs roots = self.roots freq = self.arfreq modulus = np.abs(roots) data = np.column_stack((roots.real, roots.imag, modulus, freq)) roots_table = SimpleTable( [ ( "%17.4f" % row[0], "%+17.4fj" % row[1], "%17.4f" % row[2], "%17.4f" % row[3], ) for row in data ], headers=[ " Real", " Imaginary", " Modulus", " Frequency", ], title="Roots", stubs=stubs, ) smry.tables.append(roots_table) return smry class AutoRegResultsWrapper(wrap.ResultsWrapper): _attrs = {} _wrap_attrs = wrap.union_dicts( tsa_model.TimeSeriesResultsWrapper._wrap_attrs, _attrs ) _methods = {} _wrap_methods = wrap.union_dicts( tsa_model.TimeSeriesResultsWrapper._wrap_methods, _methods ) wrap.populate_wrapper(AutoRegResultsWrapper, AutoRegResults) doc = Docstring(AutoReg.__doc__) _auto_reg_params = doc.extract_parameters( [ "trend", "seasonal", "exog", "hold_back", "period", "missing", "old_names", ], 4, ) @Substitution(auto_reg_params=_auto_reg_params) def ar_select_order( endog, maxlag, ic="bic", glob=False, trend="c", seasonal=False, exog=None, hold_back=None, period=None, missing="none", old_names=False, ): """ Autoregressive AR-X(p) model order selection. Parameters ---------- endog : array_like A 1-d endogenous response variable. The independent variable. maxlag : int The maximum lag to consider. ic : {'aic', 'hqic', 'bic'} The information criterion to use in the selection. glob : bool Flag indicating where to use a global search across all combinations of lags. In practice, this option is not computational feasible when maxlag is larger than 15 (or perhaps 20) since the global search requires fitting 2**maxlag models. %(auto_reg_params)s Returns ------- AROrderSelectionResults A results holder containing the model and the complete set of information criteria for all models fit. Examples -------- >>> from statsmodels.tsa.ar_model import ar_select_order >>> data = sm.datasets.sunspots.load_pandas().data['SUNACTIVITY'] Determine the optimal lag structure >>> mod = ar_select_order(data, maxlag=13) >>> mod.ar_lags array([1, 2, 3, 4, 5, 6, 7, 8, 9]) Determine the optimal lag structure with seasonal terms >>> mod = ar_select_order(data, maxlag=13, seasonal=True, period=12) >>> mod.ar_lags array([1, 2, 3, 4, 5, 6, 7, 8, 9]) Globally determine the optimal lag structure >>> mod = ar_select_order(data, maxlag=13, glob=True) >>> mod.ar_lags array([1, 2, 9]) """ full_mod = AutoReg( endog, maxlag, trend=trend, seasonal=seasonal, exog=exog, hold_back=hold_back, period=period, missing=missing, old_names=old_names, ) nexog = full_mod.exog.shape[1] if full_mod.exog is not None else 0 y, x = full_mod._y, full_mod._x base_col = x.shape[1] - nexog - maxlag sel = np.ones(x.shape[1], dtype=bool) ics = [] def compute_ics(res): nobs = res.nobs df_model = res.df_model sigma2 = 1.0 / nobs * sumofsq(res.resid) llf = -nobs * (np.log(2 * np.pi * sigma2) + 1) / 2 res = SimpleNamespace( nobs=nobs, df_model=df_model, sigma2=sigma2, llf=llf ) aic = call_cached_func(AutoRegResults.aic, res) bic = call_cached_func(AutoRegResults.bic, res) hqic = call_cached_func(AutoRegResults.hqic, res) return aic, bic, hqic def ic_no_data(): """Fake mod and results to handle no regressor case""" mod = SimpleNamespace( nobs=y.shape[0], endog=y, exog=np.empty((y.shape[0], 0)) ) llf = OLS.loglike(mod, np.empty(0)) res = SimpleNamespace( resid=y, nobs=y.shape[0], llf=llf, df_model=0, k_constant=0 ) return compute_ics(res) if not glob: sel[base_col : base_col + maxlag] = False for i in range(maxlag + 1): sel[base_col : base_col + i] = True if not np.any(sel): ics.append((0, ic_no_data())) continue res = OLS(y, x[:, sel]).fit() lags = tuple(j for j in range(1, i + 1)) lags = 0 if not lags else lags ics.append((lags, compute_ics(res))) else: bits = np.arange(2 ** maxlag, dtype=np.int32)[:, None] bits = bits.view(np.uint8) bits = np.unpackbits(bits).reshape(-1, 32) for i in range(4): bits[:, 8 * i : 8 * (i + 1)] = bits[:, 8 * i : 8 * (i + 1)][ :, ::-1 ] masks = bits[:, :maxlag] for mask in masks: sel[base_col : base_col + maxlag] = mask if not np.any(sel): ics.append((0, ic_no_data())) continue res = OLS(y, x[:, sel]).fit() lags = tuple(np.where(mask)[0] + 1) lags = 0 if not lags else lags ics.append((lags, compute_ics(res))) key_loc = {"aic": 0, "bic": 1, "hqic": 2}[ic] ics = sorted(ics, key=lambda x: x[1][key_loc]) selected_model = ics[0][0] mod = AutoReg( endog, selected_model, trend=trend, seasonal=seasonal, exog=exog, hold_back=hold_back, period=period, missing=missing, old_names=old_names, ) return AROrderSelectionResults(mod, ics, trend, seasonal, period) class AROrderSelectionResults(object): """ Results from an AR order selection Contains the information criteria for all fitted model orders. """ def __init__(self, model, ics, trend, seasonal, period): self._model = model self._ics = ics self._trend = trend self._seasonal = seasonal self._period = period aic = sorted(ics, key=lambda r: r[1][0]) self._aic = dict([(key, val[0]) for key, val in aic]) bic = sorted(ics, key=lambda r: r[1][1]) self._bic = dict([(key, val[1]) for key, val in bic]) hqic = sorted(ics, key=lambda r: r[1][2]) self._hqic = dict([(key, val[2]) for key, val in hqic]) @property def model(self): """The model selected using the chosen information criterion.""" return self._model @property def seasonal(self): """Flag indicating if a seasonal component is included.""" return self._seasonal @property def trend(self): """The trend included in the model selection.""" return self._trend @property def period(self): """The period of the seasonal component.""" return self._period @property def aic(self): """ The Akaike information criterion for the models fit. Returns ------- dict[tuple, float] """ return self._aic @property def bic(self): """ The Bayesian (Schwarz) information criteria for the models fit. Returns ------- dict[tuple, float] """ return self._bic @property def hqic(self): """ The Hannan-Quinn information criteria for the models fit. Returns ------- dict[tuple, float] """ return self._hqic @property def ar_lags(self): """The lags included in the selected model.""" return self._model.ar_lags