""" SARIMAX specification class. Author: Chad Fulton License: BSD-3 """ import numpy as np import pandas as pd from statsmodels.tools.data import _is_using_pandas from statsmodels.tsa.base.tsa_model import TimeSeriesModel from statsmodels.tsa.statespace.tools import ( is_invertible, constrain_stationary_univariate as constrain, unconstrain_stationary_univariate as unconstrain, prepare_exog, prepare_trend_spec, prepare_trend_data) from statsmodels.tsa.arima.tools import standardize_lag_order, validate_basic class SARIMAXSpecification(object): """ SARIMAX specification. Parameters ---------- endog : array_like, optional The observed time-series process :math:`y`. exog : array_like, optional Array of exogenous regressors. order : tuple, optional The (p,d,q) order of the model for the autoregressive, differences, and moving average components. d is always an integer, while p and q may either be integers or lists of integers. May not be used in combination with the arguments `ar_order`, `diff`, or `ma_order`. seasonal_order : tuple, optional The (P,D,Q,s) order of the seasonal component of the model for the AR parameters, differences, MA parameters, and periodicity. Default is (0, 0, 0, 0). D and s are always integers, while P and Q may either be integers or lists of positive integers. May not be used in combination with the arguments `seasonal_ar_order`, `seasonal_diff`, or `seasonal_ma_order`. ar_order : int or list of int The autoregressive order of the model. May be an integer, in which case all autoregressive lags up to and including it will be included. Alternatively, may be a list of integers specifying which lag orders are included. May not be used in combination with `order`. diff : int The order of integration of the model. May not be used in combination with `order`. ma_order : int or list of int The moving average order of the model. May be an integer or list of integers. See the documentation for `ar_order` for details. May not be used in combination with `order`. seasonal_ar_order : int or list of int The seasonal autoregressive order of the model. May be an integer or list of integers. See the documentation for `ar_order` for examples. Note that if `seasonal_periods = 4` and `seasonal_ar_order = 2`, then this implies that the overall model will include lags 4 and 8. May not be used in combination with `seasonal_order`. seasonal_diff : int The order of seasonal integration of the model. May not be used in combination with `seasonal_order`. seasonal_ma_order : int or list of int The moving average order of the model. May be an integer or list of integers. See the documentation for `ar_order` and `seasonal_ar_order` for additional details. May not be used in combination with `seasonal_order`. seasonal_periods : int Number of periods in a season. May not be used in combination with `seasonal_order`. enforce_stationarity : bool, optional Whether or not to require the autoregressive parameters to correspond to a stationarity process. This is only possible in estimation by numerical maximum likelihood. enforce_invertibility : bool, optional Whether or not to require the moving average parameters to correspond to an invertible process. This is only possible in estimation by numerical maximum likelihood. concentrate_scale : bool, optional Whether or not to concentrate the scale (variance of the error term) out of the likelihood. This reduces the number of parameters by one. This is only applicable when considering estimation by numerical maximum likelihood. dates : array_like of datetime, optional If no index is given by `endog` or `exog`, an array-like object of datetime objects can be provided. freq : str, optional If no index is given by `endog` or `exog`, the frequency of the time-series may be specified here as a Pandas offset or offset string. missing : str Available options are 'none', 'drop', and 'raise'. If 'none', no nan checking is done. If 'drop', any observations with nans are dropped. If 'raise', an error is raised. Default is 'none'. Attributes ---------- order : tuple, optional The (p,d,q) order of the model for the autoregressive, differences, and moving average components. d is always an integer, while p and q may either be integers or lists of integers. seasonal_order : tuple, optional The (P,D,Q,s) order of the seasonal component of the model for the AR parameters, differences, MA parameters, and periodicity. Default is (0, 0, 0, 0). D and s are always integers, while P and Q may either be integers or lists of positive integers. ar_order : int or list of int The autoregressive order of the model. May be an integer, in which case all autoregressive lags up to and including it will be included. For example, if `ar_order = 3`, then the model will include lags 1, 2, and 3. Alternatively, may be a list of integers specifying exactly which lag orders are included. For example, if `ar_order = [1, 3]`, then the model will include lags 1 and 3 but will exclude lag 2. diff : int The order of integration of the model. ma_order : int or list of int The moving average order of the model. May be an integer or list of integers. See the documentation for `ar_order` for examples. seasonal_ar_order : int or list of int The seasonal autoregressive order of the model. May be an integer or list of integers. See the documentation for `ar_order` for examples. Note that if `seasonal_periods = 4` and `seasonal_ar_order = 2`, then this implies that the overall model will include lags 4 and 8. seasonal_diff : int The order of seasonal integration of the model. seasonal_ma_order : int or list of int The moving average order of the model. May be an integer or list of integers. See the documentation for `ar_order` and `seasonal_ar_order` for additional details. seasonal_periods : int Number of periods in a season. trend : str{'n','c','t','ct'} or iterable, optional Parameter controlling the deterministic trend polynomial :math:`A(t)`. Can be specified as a string where 'c' indicates a constant (i.e. a degree zero component of the trend polynomial), 't' indicates a linear trend with time, and 'ct' is both. Can also be specified as an iterable defining the polynomial as in `numpy.poly1d`, where `[1,1,0,1]` would denote :math:`a + bt + ct^3`. Default is to not include a trend component. ar_lags : list of int List of included autoregressive lags. If `ar_order` is a list, then `ar_lags == ar_order`. If `ar_lags = [1, 2]`, then the overall model will include the 1st and 2nd autoregressive lags. ma_lags : list of int List of included moving average lags. If `ma_order` is a list, then `ma_lags == ma_order`. If `ma_lags = [1, 2]`, then the overall model will include the 1st and 2nd moving average lags. seasonal_ar_lags : list of int List of included seasonal autoregressive lags. If `seasonal_ar_order` is a list, then `seasonal_ar_lags == seasonal_ar_order`. If `seasonal_periods = 4` and `seasonal_ar_lags = [1, 2]`, then the overall model will include the 4th and 8th autoregressive lags. seasonal_ma_lags : list of int List of included seasonal moving average lags. If `seasonal_ma_order` is a list, then `seasonal_ma_lags == seasonal_ma_order`. See the documentation to `seasonal_ar_lags` for examples. max_ar_order : int Largest included autoregressive lag. max_ma_order : int Largest included moving average lag. max_seasonal_ar_order : int Largest included seasonal autoregressive lag. max_seasonal_ma_order : int Largest included seasonal moving average lag. max_reduced_ar_order : int Largest lag in the reduced autoregressive polynomial. Equal to `max_ar_order + max_seasonal_ar_order * seasonal_periods`. max_reduced_ma_order : int Largest lag in the reduced moving average polynomial. Equal to `max_ma_order + max_seasonal_ma_order * seasonal_periods`. enforce_stationarity : bool Whether or not to transform the AR parameters to enforce stationarity in the autoregressive component of the model. This is only possible in estimation by numerical maximum likelihood. enforce_invertibility : bool Whether or not to transform the MA parameters to enforce invertibility in the moving average component of the model. This is only possible in estimation by numerical maximum likelihood. concentrate_scale : bool Whether or not to concentrate the variance (scale term) out of the log-likelihood function. This is only applicable when considering estimation by numerical maximum likelihood. is_ar_consecutive is_ma_consecutive is_integrated is_seasonal k_exog_params k_ar_params k_ma_params k_seasonal_ar_params k_seasonal_ma_params k_params exog_names ar_names ma_names seasonal_ar_names seasonal_ma_names param_names Examples -------- >>> SARIMAXSpecification(order=(1, 0, 2)) SARIMAXSpecification(endog=y, order=(1, 0, 2)) >>> spec = SARIMAXSpecification(ar_order=1, ma_order=2) SARIMAXSpecification(endog=y, order=(1, 0, 2)) >>> spec = SARIMAXSpecification(ar_order=1, seasonal_order=(1, 0, 0, 4)) SARIMAXSpecification(endog=y, order=(1, 0, 0), seasonal_order=(1, 0, 0, 4)) """ def __init__(self, endog=None, exog=None, order=None, seasonal_order=None, ar_order=None, diff=None, ma_order=None, seasonal_ar_order=None, seasonal_diff=None, seasonal_ma_order=None, seasonal_periods=None, trend=None, enforce_stationarity=None, enforce_invertibility=None, concentrate_scale=None, trend_offset=1, dates=None, freq=None, missing='none', validate_specification=True): # Basic parameters self.enforce_stationarity = enforce_stationarity self.enforce_invertibility = enforce_invertibility self.concentrate_scale = concentrate_scale self.trend_offset = trend_offset # Validate that we were not given conflicting specifications has_order = order is not None has_specific_order = (ar_order is not None or diff is not None or ma_order is not None) has_seasonal_order = seasonal_order is not None has_specific_seasonal_order = (seasonal_ar_order is not None or seasonal_diff is not None or seasonal_ma_order is not None or seasonal_periods is not None) if has_order and has_specific_order: raise ValueError('Cannot specify both `order` and either of' ' `ar_order` or `ma_order`.') if has_seasonal_order and has_specific_seasonal_order: raise ValueError('Cannot specify both `seasonal_order` and any of' ' `seasonal_ar_order`, `seasonal_ma_order`,' ' or `seasonal_periods`.') # Compute `order` if has_specific_order: ar_order = 0 if ar_order is None else ar_order diff = 0 if diff is None else diff ma_order = 0 if ma_order is None else ma_order order = (ar_order, diff, ma_order) elif not has_order: order = (0, 0, 0) # Compute `seasonal_order` if has_specific_seasonal_order: seasonal_ar_order = ( 0 if seasonal_ar_order is None else seasonal_ar_order) seasonal_diff = 0 if seasonal_diff is None else seasonal_diff seasonal_ma_order = ( 0 if seasonal_ma_order is None else seasonal_ma_order) seasonal_periods = ( 0 if seasonal_periods is None else seasonal_periods) seasonal_order = (seasonal_ar_order, seasonal_diff, seasonal_ma_order, seasonal_periods) elif not has_seasonal_order: seasonal_order = (0, 0, 0, 0) # Validate shapes of `order`, `seasonal_order` if len(order) != 3: raise ValueError('`order` argument must be an iterable with three' ' elements.') if len(seasonal_order) != 4: raise ValueError('`seasonal_order` argument must be an iterable' ' with four elements.') # Validate differencing parameters if validate_specification: if order[1] < 0: raise ValueError('Cannot specify negative differencing.') if order[1] != int(order[1]): raise ValueError('Cannot specify fractional differencing.') if seasonal_order[1] < 0: raise ValueError('Cannot specify negative seasonal' ' differencing.') if seasonal_order[1] != int(seasonal_order[1]): raise ValueError('Cannot specify fractional seasonal' ' differencing.') if seasonal_order[3] < 0: raise ValueError('Cannot specify negative seasonal' ' periodicity.') # Standardize to integers or lists of integers order = ( standardize_lag_order(order[0], 'AR'), int(order[1]), standardize_lag_order(order[2], 'MA')) seasonal_order = ( standardize_lag_order(seasonal_order[0], 'seasonal AR'), int(seasonal_order[1]), standardize_lag_order(seasonal_order[2], 'seasonal MA'), int(seasonal_order[3])) # Validate seasonals if validate_specification: if seasonal_order[3] == 1: raise ValueError('Seasonal periodicity must be greater' ' than 1.') if ((seasonal_order[0] != 0 or seasonal_order[1] != 0 or seasonal_order[2] != 0) and seasonal_order[3] == 0): raise ValueError('Must include nonzero seasonal periodicity if' ' including seasonal AR, MA, or' ' differencing.') # Basic order self.order = order self.ar_order, self.diff, self.ma_order = order self.seasonal_order = seasonal_order (self.seasonal_ar_order, self.seasonal_diff, self.seasonal_ma_order, self.seasonal_periods) = seasonal_order # Lists of included lags if isinstance(self.ar_order, list): self.ar_lags = self.ar_order else: self.ar_lags = np.arange(1, self.ar_order + 1).tolist() if isinstance(self.ma_order, list): self.ma_lags = self.ma_order else: self.ma_lags = np.arange(1, self.ma_order + 1).tolist() if isinstance(self.seasonal_ar_order, list): self.seasonal_ar_lags = self.seasonal_ar_order else: self.seasonal_ar_lags = ( np.arange(1, self.seasonal_ar_order + 1).tolist()) if isinstance(self.seasonal_ma_order, list): self.seasonal_ma_lags = self.seasonal_ma_order else: self.seasonal_ma_lags = ( np.arange(1, self.seasonal_ma_order + 1).tolist()) # Maximum lag orders self.max_ar_order = self.ar_lags[-1] if self.ar_lags else 0 self.max_ma_order = self.ma_lags[-1] if self.ma_lags else 0 self.max_seasonal_ar_order = ( self.seasonal_ar_lags[-1] if self.seasonal_ar_lags else 0) self.max_seasonal_ma_order = ( self.seasonal_ma_lags[-1] if self.seasonal_ma_lags else 0) self.max_reduced_ar_order = ( self.max_ar_order + self.max_seasonal_ar_order * self.seasonal_periods) self.max_reduced_ma_order = ( self.max_ma_order + self.max_seasonal_ma_order * self.seasonal_periods) # Check that we don't have duplicate AR or MA lags from the seasonal # component ar_lags = set(self.ar_lags) seasonal_ar_lags = set(np.array(self.seasonal_ar_lags) * self.seasonal_periods) duplicate_ar_lags = ar_lags.intersection(seasonal_ar_lags) if validate_specification and len(duplicate_ar_lags) > 0: raise ValueError('Invalid model: autoregressive lag(s) %s are' ' in both the seasonal and non-seasonal' ' autoregressive components.' % duplicate_ar_lags) ma_lags = set(self.ma_lags) seasonal_ma_lags = set(np.array(self.seasonal_ma_lags) * self.seasonal_periods) duplicate_ma_lags = ma_lags.intersection(seasonal_ma_lags) if validate_specification and len(duplicate_ma_lags) > 0: raise ValueError('Invalid model: moving average lag(s) %s are' ' in both the seasonal and non-seasonal' ' moving average components.' % duplicate_ma_lags) # Handle trend self.trend = trend self.trend_poly, _ = prepare_trend_spec(trend) # Check for a constant column in the provided exog exog_is_pandas = _is_using_pandas(exog, None) if (validate_specification and exog is not None and len(self.trend_poly) > 0 and self.trend_poly[0] == 1): # Figure out if we have any constant columns x = np.asanyarray(exog) ptp0 = np.ptp(x, axis=0) col_is_const = ptp0 == 0 nz_const = col_is_const & (x[0] != 0) col_const = nz_const # If we already have a constant column, raise an error if np.any(col_const): raise ValueError('A constant trend was included in the model' ' specification, but the `exog` data already' ' contains a column of constants.') # This contains the included exponents of the trend polynomial, # where e.g. the constant term has exponent 0, a linear trend has # exponent 1, etc. self.trend_terms = np.where(self.trend_poly == 1)[0] # Trend order is either the degree of the trend polynomial, if all # exponents are included, or a list of included exponents. Here we need # to make a distinction between a degree zero polynomial (i.e. a # constant) and the zero polynomial (i.e. not even a constant). The # former has `trend_order = 0`, while the latter has # `trend_order = None`. self.k_trend = len(self.trend_terms) if len(self.trend_terms) == 0: self.trend_order = None self.trend_degree = None elif np.all(self.trend_terms == np.arange(len(self.trend_terms))): self.trend_order = self.trend_terms[-1] self.trend_degree = self.trend_terms[-1] else: self.trend_order = self.trend_terms self.trend_degree = self.trend_terms[-1] # Handle endog / exog # Standardize exog self.k_exog, exog = prepare_exog(exog) # Standardize endog (including creating a faux endog if necessary) faux_endog = endog is None if endog is None: endog = [] if exog is None else np.zeros(len(exog)) * np.nan # Add trend data into exog nobs = len(endog) if exog is None else len(exog) if self.trend_order is not None: # Add in the data trend_data = self.construct_trend_data(nobs, trend_offset) if exog is None: exog = trend_data elif exog_is_pandas: trend_data = pd.DataFrame(trend_data, index=exog.index, columns=self.construct_trend_names()) exog = pd.concat([trend_data, exog], axis=1) else: exog = np.c_[trend_data, exog] # Create an underlying time series model, to handle endog / exog, # especially validating shapes, retrieving names, and potentially # providing us with a time series index self._model = TimeSeriesModel(endog, exog=exog, dates=dates, freq=freq, missing=missing) self.endog = None if faux_endog else self._model.endog self.exog = self._model.exog # Validate endog shape if (validate_specification and not faux_endog and self.endog.ndim > 1 and self.endog.shape[1] > 1): raise ValueError('SARIMAX models require univariate `endog`. Got' ' shape %s.' % str(self.endog.shape)) self._has_missing = ( None if faux_endog else np.any(np.isnan(self.endog))) @property def is_ar_consecutive(self): """ (bool) Is autoregressive lag polynomial consecutive. I.e. does it include all lags up to and including the maximum lag. """ return (self.max_seasonal_ar_order == 0 and not isinstance(self.ar_order, list)) @property def is_ma_consecutive(self): """ (bool) Is moving average lag polynomial consecutive. I.e. does it include all lags up to and including the maximum lag. """ return (self.max_seasonal_ma_order == 0 and not isinstance(self.ma_order, list)) @property def is_integrated(self): """ (bool) Is the model integrated. I.e. does it have a nonzero `diff` or `seasonal_diff`. """ return self.diff > 0 or self.seasonal_diff > 0 @property def is_seasonal(self): """(bool) Does the model include a seasonal component.""" return self.seasonal_periods != 0 @property def k_exog_params(self): """(int) Number of parameters associated with exogenous variables.""" return len(self.exog_names) @property def k_ar_params(self): """(int) Number of autoregressive (non-seasonal) parameters.""" return len(self.ar_lags) @property def k_ma_params(self): """(int) Number of moving average (non-seasonal) parameters.""" return len(self.ma_lags) @property def k_seasonal_ar_params(self): """(int) Number of seasonal autoregressive parameters.""" return len(self.seasonal_ar_lags) @property def k_seasonal_ma_params(self): """(int) Number of seasonal moving average parameters.""" return len(self.seasonal_ma_lags) @property def k_params(self): """(int) Total number of model parameters.""" k_params = (self.k_exog_params + self.k_ar_params + self.k_ma_params + self.k_seasonal_ar_params + self.k_seasonal_ma_params) if not self.concentrate_scale: k_params += 1 return k_params @property def exog_names(self): """(list of str) Names associated with exogenous parameters.""" exog_names = self._model.exog_names return [] if exog_names is None else exog_names @property def ar_names(self): """(list of str) Names of (non-seasonal) autoregressive parameters.""" return ['ar.L%d' % i for i in self.ar_lags] @property def ma_names(self): """(list of str) Names of (non-seasonal) moving average parameters.""" return ['ma.L%d' % i for i in self.ma_lags] @property def seasonal_ar_names(self): """(list of str) Names of seasonal autoregressive parameters.""" s = self.seasonal_periods return ['ar.S.L%d' % (i * s) for i in self.seasonal_ar_lags] @property def seasonal_ma_names(self): """(list of str) Names of seasonal moving average parameters.""" s = self.seasonal_periods return ['ma.S.L%d' % (i * s) for i in self.seasonal_ma_lags] @property def param_names(self): """(list of str) Names of all model parameters.""" names = (self.exog_names + self.ar_names + self.ma_names + self.seasonal_ar_names + self.seasonal_ma_names) if not self.concentrate_scale: names.append('sigma2') return names @property def valid_estimators(self): """ (list of str) Estimators that could be used with specification. Note: does not consider the presense of `exog` in determining valid estimators. If there are exogenous variables, then feasible Generalized Least Squares should be used through the `gls` estimator, and the `valid_estimators` are the estimators that could be passed as the `arma_estimator` argument to `gls`. """ estimators = {'yule_walker', 'burg', 'innovations', 'hannan_rissanen', 'innovations_mle', 'statespace'} # Properties has_ar = self.max_ar_order != 0 has_ma = self.max_ma_order != 0 has_seasonal = self.seasonal_periods != 0 # Only state space can handle missing data or concentrated scale if self._has_missing: estimators.intersection_update(['statespace']) # Only numerical MLE estimators can enforce restrictions if ((self.enforce_stationarity and self.max_ar_order > 0) or (self.enforce_invertibility and self.max_ma_order > 0)): estimators.intersection_update(['innovations_mle', 'statespace']) # Innovations: no AR, non-consecutive MA, seasonal if has_ar or not self.is_ma_consecutive or has_seasonal: estimators.discard('innovations') # Yule-Walker/Burg: no MA, non-consecutive AR, seasonal if has_ma or not self.is_ar_consecutive or has_seasonal: estimators.discard('yule_walker') estimators.discard('burg') # Hannan-Rissanen: no seasonal if has_seasonal: estimators.discard('hannan_rissanen') # Innovations MLE: cannot have enforce_stationary=False or # concentratre_scale=True if self.enforce_stationarity is False or self.concentrate_scale: estimators.discard('innovations_mle') return estimators def validate_estimator(self, estimator): """ Validate an SARIMA estimator. Parameters ---------- estimator : str Name of the estimator to validate against the current state of the specification. Possible values are: 'yule_walker', 'burg', 'innovations', 'hannan_rissanen', 'innovoations_mle', 'statespace'. Notes ----- This method will raise a `ValueError` if an invalid method is passed, and otherwise will return None. This method does not consider the presense of `exog` in determining valid estimators. If there are exogenous variables, then feasible Generalized Least Squares should be used through the `gls` estimator, and a "valid" estimator is one that could be passed as the `arma_estimator` argument to `gls`. This method only uses the attributes `enforce_stationarity` and `concentrate_scale` to determine the validity of numerical maximum likelihood estimators. These only include 'innovations_mle' (which does not support `enforce_stationarity=False` or `concentrate_scale=True`) and 'statespace' (which supports all combinations of each). Examples -------- >>> spec = SARIMAXSpecification(order=(1, 0, 2)) >>> spec.validate_estimator('yule_walker') ValueError: Yule-Walker estimator does not support moving average components. >>> spec.validate_estimator('burg') ValueError: Burg estimator does not support moving average components. >>> spec.validate_estimator('innovations') ValueError: Burg estimator does not support autoregressive components. >>> spec.validate_estimator('hannan_rissanen') # returns None >>> spec.validate_estimator('innovations_mle') # returns None >>> spec.validate_estimator('statespace') # returns None >>> spec.validate_estimator('not_an_estimator') ValueError: "not_an_estimator" is not a valid estimator. """ has_ar = self.max_ar_order != 0 has_ma = self.max_ma_order != 0 has_seasonal = self.seasonal_periods != 0 has_missing = self._has_missing titles = { 'yule_walker': 'Yule-Walker', 'burg': 'Burg', 'innovations': 'Innovations', 'hannan_rissanen': 'Hannan-Rissanen', 'innovations_mle': 'Innovations MLE', 'statespace': 'State space' } # Only state space form can support missing data if estimator != 'statespace': if has_missing: raise ValueError('%s estimator does not support missing' ' values in `endog`.' % titles[estimator]) # Only state space and innovations MLE can enforce parameter # restrictions if estimator not in ['innovations_mle', 'statespace']: if self.max_ar_order > 0 and self.enforce_stationarity: raise ValueError('%s estimator cannot enforce a stationary' ' autoregressive lag polynomial.' % titles[estimator]) if self.max_ma_order > 0 and self.enforce_invertibility: raise ValueError('%s estimator cannot enforce an invertible' ' moving average lag polynomial.' % titles[estimator]) # Now go through specific disqualifications for each estimator if estimator in ['yule_walker', 'burg']: if has_seasonal: raise ValueError('%s estimator does not support seasonal' ' components.' % titles[estimator]) if not self.is_ar_consecutive: raise ValueError('%s estimator does not support' ' non-consecutive autoregressive lags.' % titles[estimator]) if has_ma: raise ValueError('%s estimator does not support moving average' ' components.' % titles[estimator]) elif estimator == 'innovations': if has_seasonal: raise ValueError('Innovations estimator does not support' ' seasonal components.') if not self.is_ma_consecutive: raise ValueError('Innovations estimator does not support' ' non-consecutive moving average lags.') if has_ar: raise ValueError('Innovations estimator does not support' ' autoregressive components.') elif estimator == 'hannan_rissanen': if has_seasonal: raise ValueError('Hannan-Rissanen estimator does not support' ' seasonal components.') elif estimator == 'innovations_mle': if self.enforce_stationarity is False: raise ValueError('Innovations MLE estimator does not support' ' non-stationary autoregressive components,' ' but `enforce_stationarity` is set to False') if self.concentrate_scale: raise ValueError('Innovations MLE estimator does not support' ' concentrating the scale out of the' ' log-likelihood function') elif estimator == 'statespace': # State space form supports all variations of SARIMAX. pass else: raise ValueError('"%s" is not a valid estimator.' % estimator) def split_params(self, params, allow_infnan=False): """ Split parameter array by type into dictionary. Parameters ---------- params : array_like Array of model parameters. allow_infnan : bool, optional Whether or not to allow `params` to contain -np.Inf, np.Inf, and np.nan. Default is False. Returns ------- split_params : dict Dictionary with keys 'exog_params', 'ar_params', 'ma_params', 'seasonal_ar_params', 'seasonal_ma_params', and (unless `concentrate_scale=True`) 'sigma2'. Values are the parameters associated with the key, based on the `params` argument. Examples -------- >>> spec = SARIMAXSpecification(ar_order=1) >>> spec.split_params([0.5, 4]) {'exog_params': array([], dtype=float64), 'ar_params': array([0.5]), 'ma_params': array([], dtype=float64), 'seasonal_ar_params': array([], dtype=float64), 'seasonal_ma_params': array([], dtype=float64), 'sigma2': 4.0} """ params = validate_basic(params, self.k_params, allow_infnan=allow_infnan, title='joint parameters') ix = [self.k_exog_params, self.k_ar_params, self.k_ma_params, self.k_seasonal_ar_params, self.k_seasonal_ma_params] names = ['exog_params', 'ar_params', 'ma_params', 'seasonal_ar_params', 'seasonal_ma_params'] if not self.concentrate_scale: ix.append(1) names.append('sigma2') ix = np.cumsum(ix) out = dict(zip(names, np.split(params, ix))) if 'sigma2' in out: out['sigma2'] = out['sigma2'].item() return out def join_params(self, exog_params=None, ar_params=None, ma_params=None, seasonal_ar_params=None, seasonal_ma_params=None, sigma2=None): """ Join parameters into a single vector. Parameters ---------- exog_params : array_like, optional Parameters associated with exogenous regressors. Required if `exog` is part of specification. ar_params : array_like, optional Parameters associated with (non-seasonal) autoregressive component. Required if this component is part of the specification. ma_params : array_like, optional Parameters associated with (non-seasonal) moving average component. Required if this component is part of the specification. seasonal_ar_params : array_like, optional Parameters associated with seasonal autoregressive component. Required if this component is part of the specification. seasonal_ma_params : array_like, optional Parameters associated with seasonal moving average component. Required if this component is part of the specification. sigma2 : array_like, optional Innovation variance parameter. Required unless `concentrated_scale=True`. Returns ------- params : ndarray Array of parameters. Examples -------- >>> spec = SARIMAXSpecification(ar_order=1) >>> spec.join_params(ar_params=0.5, sigma2=4) array([0.5, 4. ]) """ definitions = [ ('exogenous variables', self.k_exog_params, exog_params), ('AR terms', self.k_ar_params, ar_params), ('MA terms', self.k_ma_params, ma_params), ('seasonal AR terms', self.k_seasonal_ar_params, seasonal_ar_params), ('seasonal MA terms', self.k_seasonal_ma_params, seasonal_ma_params), ('variance', int(not self.concentrate_scale), sigma2)] params_list = [] for title, k, params in definitions: if k > 0: # Validate if params is None: raise ValueError('Specification includes %s, but no' ' parameters were provided.' % title) params = np.atleast_1d(np.squeeze(params)) if not params.shape == (k,): raise ValueError('Specification included %d %s, but' ' parameters with shape %s were provided.' % (k, title, params.shape)) # Otherwise add to the list params_list.append(params) return np.concatenate(params_list) def validate_params(self, params): """ Validate parameter vector by raising ValueError on invalid values. Parameters ---------- params : array_like Array of model parameters. Notes ----- Primarily checks that the parameters have the right shape and are not NaN or infinite. Also checks if parameters are consistent with a stationary process if `enforce_stationarity=True` and that they are consistent with an invertible process if `enforce_invertibility=True`. Finally, checks that the variance term is positive, unless `concentrate_scale=True`. Examples -------- >>> spec = SARIMAXSpecification(ar_order=1) >>> spec.validate_params([-0.5, 4.]) # returns None >>> spec.validate_params([-0.5, -2]) ValueError: Non-positive variance term. >>> spec.validate_params([-1.5, 4.]) ValueError: Non-stationary autoregressive polynomial. """ # Note: split_params includes basic validation params = self.split_params(params) # Specific checks if self.enforce_stationarity: if self.k_ar_params: ar_poly = np.r_[1, -params['ar_params']] if not is_invertible(ar_poly): raise ValueError('Non-stationary autoregressive' ' polynomial.') if self.k_seasonal_ar_params: seasonal_ar_poly = np.r_[1, -params['seasonal_ar_params']] if not is_invertible(seasonal_ar_poly): raise ValueError('Non-stationary seasonal autoregressive' ' polynomial.') if self.enforce_invertibility: if self.k_ma_params: ma_poly = np.r_[1, params['ma_params']] if not is_invertible(ma_poly): raise ValueError('Non-invertible moving average' ' polynomial.') if self.k_seasonal_ma_params: seasonal_ma_poly = np.r_[1, params['seasonal_ma_params']] if not is_invertible(seasonal_ma_poly): raise ValueError('Non-invertible seasonal moving average' ' polynomial.') if not self.concentrate_scale: if params['sigma2'] <= 0: raise ValueError('Non-positive variance term.') def constrain_params(self, unconstrained): """ Constrain parameter values to be valid through transformations. Parameters ---------- unconstrained : array_like Array of model unconstrained parameters. Returns ------- constrained : ndarray Array of model parameters transformed to produce a valid model. Notes ----- This is usually only used when performing numerical minimization of the log-likelihood function. This function is necessary because the minimizers consider values over the entire real space, while SARIMAX models require parameters in subspaces (for example positive variances). Examples -------- >>> spec = SARIMAXSpecification(ar_order=1) >>> spec.constrain_params([10, -2]) array([-0.99504, 4. ]) """ unconstrained = self.split_params(unconstrained) params = {} if self.k_exog_params: params['exog_params'] = unconstrained['exog_params'] if self.k_ar_params: if self.enforce_stationarity: params['ar_params'] = constrain(unconstrained['ar_params']) else: params['ar_params'] = unconstrained['ar_params'] if self.k_ma_params: if self.enforce_invertibility: params['ma_params'] = -constrain(unconstrained['ma_params']) else: params['ma_params'] = unconstrained['ma_params'] if self.k_seasonal_ar_params: if self.enforce_stationarity: params['seasonal_ar_params'] = ( constrain(unconstrained['seasonal_ar_params'])) else: params['seasonal_ar_params'] = ( unconstrained['seasonal_ar_params']) if self.k_seasonal_ma_params: if self.enforce_invertibility: params['seasonal_ma_params'] = ( -constrain(unconstrained['seasonal_ma_params'])) else: params['seasonal_ma_params'] = ( unconstrained['seasonal_ma_params']) if not self.concentrate_scale: params['sigma2'] = unconstrained['sigma2']**2 return self.join_params(**params) def unconstrain_params(self, constrained): """ Reverse transformations used to constrain parameter values to be valid. Parameters ---------- constrained : array_like Array of model parameters. Returns ------- unconstrained : ndarray Array of parameters with constraining transformions reversed. Notes ----- This is usually only used when performing numerical minimization of the log-likelihood function. This function is the (approximate) inverse of `constrain_params`. Examples -------- >>> spec = SARIMAXSpecification(ar_order=1) >>> spec.unconstrain_params([-0.5, 4.]) array([0.57735, 2. ]) """ constrained = self.split_params(constrained) params = {} if self.k_exog_params: params['exog_params'] = constrained['exog_params'] if self.k_ar_params: if self.enforce_stationarity: params['ar_params'] = unconstrain(constrained['ar_params']) else: params['ar_params'] = constrained['ar_params'] if self.k_ma_params: if self.enforce_invertibility: params['ma_params'] = unconstrain(-constrained['ma_params']) else: params['ma_params'] = constrained['ma_params'] if self.k_seasonal_ar_params: if self.enforce_stationarity: params['seasonal_ar_params'] = ( unconstrain(constrained['seasonal_ar_params'])) else: params['seasonal_ar_params'] = ( constrained['seasonal_ar_params']) if self.k_seasonal_ma_params: if self.enforce_invertibility: params['seasonal_ma_params'] = ( unconstrain(-constrained['seasonal_ma_params'])) else: params['seasonal_ma_params'] = ( constrained['seasonal_ma_params']) if not self.concentrate_scale: params['sigma2'] = constrained['sigma2']**0.5 return self.join_params(**params) def construct_trend_data(self, nobs, offset=1): if self.trend_order is None: trend_data = None else: trend_data = prepare_trend_data( self.trend_poly, int(np.sum(self.trend_poly)), nobs, offset) return trend_data def construct_trend_names(self): names = [] for i in self.trend_terms: if i == 0: names.append('const') elif i == 1: names.append('drift') else: names.append('trend.%d' % i) return names def __repr__(self): """Represent SARIMAXSpecification object as a string.""" components = [] if self.endog is not None: components.append('endog=%s' % self._model.endog_names) if self.k_exog_params: components.append('exog=%s' % self.exog_names) components.append('order=%s' % str(self.order)) if self.seasonal_periods > 0: components.append('seasonal_order=%s' % str(self.seasonal_order)) if self.enforce_stationarity is not None: components.append('enforce_stationarity=%s' % self.enforce_stationarity) if self.enforce_invertibility is not None: components.append('enforce_invertibility=%s' % self.enforce_invertibility) if self.concentrate_scale is not None: components.append('concentrate_scale=%s' % self.concentrate_scale) return 'SARIMAXSpecification(%s)' % ', '.join(components)