"""Base Classes for Likelihood Models in time series analysis Warning: imports numdifftools Created on Sun Oct 10 15:00:47 2010 Author: josef-pktd License: BSD """ try: import numdifftools as ndt except ImportError: pass from statsmodels.base.model import LikelihoodModel #copied from sandbox/regression/mle.py #TODO: I take it this is only a stub and should be included in another # model class? class TSMLEModel(LikelihoodModel): """ univariate time series model for estimation with maximum likelihood Note: This is not working yet """ def __init__(self, endog, exog=None): #need to override p,q (nar,nma) correctly super().__init__(endog, exog) #set default arma(1,1) self.nar = 1 self.nma = 1 #self.initialize() def geterrors(self, params): raise NotImplementedError def loglike(self, params): """ Loglikelihood for timeseries model Parameters ---------- params : array_like The model parameters Notes ----- needs to be overwritten by subclass """ raise NotImplementedError def score(self, params): """ Score vector for Arma model """ #return None #print params jac = ndt.Jacobian(self.loglike, stepMax=1e-4) return jac(params)[-1] def hessian(self, params): """ Hessian of arma model. Currently uses numdifftools """ #return None Hfun = ndt.Jacobian(self.score, stepMax=1e-4) return Hfun(params)[-1] def fit(self, start_params=None, maxiter=5000, method='fmin', tol=1e-08): '''estimate model by minimizing negative loglikelihood does this need to be overwritten ? ''' if start_params is None and hasattr(self, '_start_params'): start_params = self._start_params #start_params = np.concatenate((0.05*np.ones(self.nar + self.nma), [1])) mlefit = super().fit(start_params=start_params, maxiter=maxiter, method=method, tol=tol) return mlefit