""" Run x12/x13-arima specs in a subprocess from Python and curry results back into python. Notes ----- Many of the functions are called x12. However, they are also intended to work for x13. If this is not the case, it's a bug. """ from statsmodels.compat.pandas import deprecate_kwarg import os import re import subprocess import tempfile from warnings import warn import pandas as pd from statsmodels.tools.sm_exceptions import ( IOWarning, X13Error, X13NotFoundError, X13Warning, ) from statsmodels.tools.tools import Bunch __all__ = ["x13_arima_select_order", "x13_arima_analysis"] _binary_names = ( "x13as.exe", "x13as", "x12a.exe", "x12a", "x13as_ascii", "x13as_html", ) class _freq_to_period: def __getitem__(self, key): if key.startswith("M"): return 12 elif key.startswith("Q"): return 4 elif key.startswith("W"): return 52 _freq_to_period = _freq_to_period() _period_to_freq = {12: "M", 4: "Q"} _log_to_x12 = {True: "log", False: "none", None: "auto"} _bool_to_yes_no = lambda x: "yes" if x else "no" # noqa:E731 def _find_x12(x12path=None, prefer_x13=True): """ If x12path is not given, then either x13as[.exe] or x12a[.exe] must be found on the PATH. Otherwise, the environmental variable X12PATH or X13PATH must be defined. If prefer_x13 is True, only X13PATH is searched for. If it is false, only X12PATH is searched for. """ global _binary_names if x12path is not None and x12path.endswith(_binary_names): # remove binary from path if given x12path = os.path.dirname(x12path) if not prefer_x13: # search for x12 first _binary_names = _binary_names[::-1] if x12path is None: x12path = os.getenv("X12PATH", "") if not x12path: x12path = os.getenv("X13PATH", "") elif x12path is None: x12path = os.getenv("X13PATH", "") if not x12path: x12path = os.getenv("X12PATH", "") for binary in _binary_names: x12 = os.path.join(x12path, binary) try: subprocess.check_call( x12, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) return x12 except OSError: pass else: return False def _check_x12(x12path=None): x12path = _find_x12(x12path) if not x12path: raise X13NotFoundError( "x12a and x13as not found on path. Give the " "path, put them on PATH, or set the " "X12PATH or X13PATH environmental variable." ) return x12path def _clean_order(order): """ Takes something like (1 1 0)(0 1 1) and returns a arma order, sarma order tuple. Also accepts (1 1 0) and return arma order and (0, 0, 0) """ order = re.findall(r"\([0-9 ]*?\)", order) def clean(x): return tuple(map(int, re.sub("[()]", "", x).split(" "))) if len(order) > 1: order, sorder = map(clean, order) else: order = clean(order[0]) sorder = (0, 0, 0) return order, sorder def run_spec(x12path, specpath, outname=None, meta=False, datameta=False): if meta and datameta: raise ValueError("Cannot specify both meta and datameta.") if meta: args = [x12path, "-m " + specpath] elif datameta: args = [x12path, "-d " + specpath] else: args = [x12path, specpath] if outname: args += [outname] return subprocess.Popen( args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT ) def _make_automdl_options(maxorder, maxdiff, diff): options = "\n" options += "maxorder = ({0} {1})\n".format(maxorder[0], maxorder[1]) if maxdiff is not None: # maxdiff always takes precedence options += "maxdiff = ({0} {1})\n".format(maxdiff[0], maxdiff[1]) else: options += "diff = ({0} {1})\n".format(diff[0], diff[1]) return options def _make_var_names(exog): if hasattr(exog, "name"): var_names = exog.name elif hasattr(exog, "columns"): var_names = exog.columns else: raise ValueError("exog is not a Series or DataFrame or is unnamed.") try: var_names = " ".join(var_names) except TypeError: # cannot have names that are numbers, pandas default from statsmodels.base.data import _make_exog_names if exog.ndim == 1: var_names = "x1" else: var_names = " ".join(_make_exog_names(exog)) return var_names def _make_regression_options(trading, exog): if not trading and exog is None: # start regression spec return "" reg_spec = "regression{\n" if trading: reg_spec += " variables = (td)\n" if exog is not None: var_names = _make_var_names(exog) reg_spec += " user = ({0})\n".format(var_names) reg_spec += " data = ({0})\n".format( "\n".join(map(str, exog.values.ravel().tolist())) ) reg_spec += "}\n" # close out regression spec return reg_spec def _make_forecast_options(forecast_periods): if forecast_periods is None: return "" forecast_spec = "forecast{\n" forecast_spec += "maxlead = ({0})\n}}\n".format(forecast_periods) return forecast_spec def _check_errors(errors): errors = errors[errors.find("spc:") + 4 :].strip() if errors and "ERROR" in errors: raise X13Error(errors) elif errors and "WARNING" in errors: warn(errors, X13Warning) def _convert_out_to_series(x, dates, name): """ Convert x to a DataFrame where x is a string in the format given by x-13arima-seats output. """ from io import StringIO from pandas import read_csv out = read_csv( StringIO(x), skiprows=2, header=None, sep="\t", engine="python" ) return out.set_index(dates).rename(columns={1: name})[name] def _open_and_read(fname): # opens a file, reads it, and make sure it's closed with open(fname, "r") as fin: fout = fin.read() return fout class Spec(object): @property def spec_name(self): return self.__class__.__name__.replace("Spec", "") def create_spec(self, **kwargs): spec = """{name} {{ {options} }} """ return spec.format(name=self.spec_name, options=self.options) def set_options(self, **kwargs): options = "" for key, value in kwargs.items(): options += "{0}={1}\n".format(key, value) self.__dict__.update({key: value}) self.options = options class SeriesSpec(Spec): """ Parameters ---------- data appendbcst : bool appendfcst : bool comptype compwt decimals modelspan name period precision to_print to_save span start title type Notes ----- Rarely used arguments divpower missingcode missingval saveprecision trimzero """ def __init__( self, data, name="Unnamed Series", appendbcst=False, appendfcst=False, comptype=None, compwt=1, decimals=0, modelspan=(), period=12, precision=0, to_print=[], to_save=[], span=(), start=(1, 1), title="", series_type=None, divpower=None, missingcode=-99999, missingval=1000000000, ): appendbcst, appendfcst = map( _bool_to_yes_no, [ appendbcst, appendfcst, ], ) series_name = '"{0}"'.format(name[:64]) # trim to 64 characters title = '"{0}"'.format(title[:79]) # trim to 79 characters self.set_options( data=data, appendbcst=appendbcst, appendfcst=appendfcst, period=period, start=start, title=title, name=series_name, ) def pandas_to_series_spec(x): # from statsmodels.tools.data import _check_period_index # check_period_index(x) if hasattr(x, "columns"): # convert to series if len(x.columns) > 1: raise ValueError( "Does not handle DataFrame with more than one " "column" ) x = x[x.columns[0]] data = "({0})".format("\n".join(map(str, x.values.tolist()))) # get periodicity # get start / first data # give it a title try: period = _freq_to_period[x.index.freqstr] except (AttributeError, ValueError): from pandas.tseries.api import infer_freq period = _freq_to_period[infer_freq(x.index)] start_date = x.index[0] if period == 12: year, stperiod = start_date.year, start_date.month elif period == 4: year, stperiod = start_date.year, start_date.quarter else: # pragma: no cover raise ValueError( "Only monthly and quarterly periods are supported." " Please report or send a pull request if you want " "this extended." ) if hasattr(x, "name"): name = x.name or "Unnamed Series" else: name = "Unnamed Series" series_spec = SeriesSpec( data=data, name=name, period=period, title=name, start="{0}.{1}".format(year, stperiod), ) return series_spec @deprecate_kwarg("forecast_years", "forecast_periods") def x13_arima_analysis( endog, maxorder=(2, 1), maxdiff=(2, 1), diff=None, exog=None, log=None, outlier=True, trading=False, forecast_periods=None, retspec=False, speconly=False, start=None, freq=None, print_stdout=False, x12path=None, prefer_x13=True, ): """ Perform x13-arima analysis for monthly or quarterly data. Parameters ---------- endog : array_like, pandas.Series The series to model. It is best to use a pandas object with a DatetimeIndex or PeriodIndex. However, you can pass an array-like object. If your object does not have a dates index then ``start`` and ``freq`` are not optional. maxorder : tuple The maximum order of the regular and seasonal ARMA polynomials to examine during the model identification. The order for the regular polynomial must be greater than zero and no larger than 4. The order for the seasonal polynomial may be 1 or 2. maxdiff : tuple The maximum orders for regular and seasonal differencing in the automatic differencing procedure. Acceptable inputs for regular differencing are 1 and 2. The maximum order for seasonal differencing is 1. If ``diff`` is specified then ``maxdiff`` should be None. Otherwise, ``diff`` will be ignored. See also ``diff``. diff : tuple Fixes the orders of differencing for the regular and seasonal differencing. Regular differencing may be 0, 1, or 2. Seasonal differencing may be 0 or 1. ``maxdiff`` must be None, otherwise ``diff`` is ignored. exog : array_like Exogenous variables. log : bool or None If None, it is automatically determined whether to log the series or not. If False, logs are not taken. If True, logs are taken. outlier : bool Whether or not outliers are tested for and corrected, if detected. trading : bool Whether or not trading day effects are tested for. forecast_periods : int Number of forecasts produced. The default is None. retspec : bool Whether to return the created specification file. Can be useful for debugging. speconly : bool Whether to create the specification file and then return it without performing the analysis. Can be useful for debugging. start : str, datetime Must be given if ``endog`` does not have date information in its index. Anything accepted by pandas.DatetimeIndex for the start value. freq : str Must be givein if ``endog`` does not have date information in its index. Anything accepted by pandas.DatetimeIndex for the freq value. print_stdout : bool The stdout from X12/X13 is suppressed. To print it out, set this to True. Default is False. x12path : str or None The path to x12 or x13 binary. If None, the program will attempt to find x13as or x12a on the PATH or by looking at X13PATH or X12PATH depending on the value of prefer_x13. prefer_x13 : bool If True, will look for x13as first and will fallback to the X13PATH environmental variable. If False, will look for x12a first and will fallback to the X12PATH environmental variable. If x12path points to the path for the X12/X13 binary, it does nothing. Returns ------- Bunch A bunch object containing the listed attributes. - results : str The full output from the X12/X13 run. - seasadj : pandas.Series The final seasonally adjusted ``endog``. - trend : pandas.Series The trend-cycle component of ``endog``. - irregular : pandas.Series The final irregular component of ``endog``. - stdout : str The captured stdout produced by x12/x13. - spec : str, optional Returned if ``retspec`` is True. The only thing returned if ``speconly`` is True. Notes ----- This works by creating a specification file, writing it to a temporary directory, invoking X12/X13 in a subprocess, and reading the output directory, invoking exog12/X13 in a subprocess, and reading the output back in. """ x12path = _check_x12(x12path) if not isinstance(endog, (pd.DataFrame, pd.Series)): if start is None or freq is None: raise ValueError( "start and freq cannot be none if endog is not " "a pandas object" ) endog = pd.Series( endog, index=pd.DatetimeIndex(start=start, periods=len(endog), freq=freq), ) spec_obj = pandas_to_series_spec(endog) spec = spec_obj.create_spec() spec += "transform{{function={0}}}\n".format(_log_to_x12[log]) if outlier: spec += "outlier{}\n" options = _make_automdl_options(maxorder, maxdiff, diff) spec += "automdl{{{0}}}\n".format(options) spec += _make_regression_options(trading, exog) spec += _make_forecast_options(forecast_periods) spec += "x11{ save=(d11 d12 d13) }" if speconly: return spec # write it to a tempfile # TODO: make this more robust - give the user some control? ftempin = tempfile.NamedTemporaryFile(delete=False, suffix=".spc") ftempout = tempfile.NamedTemporaryFile(delete=False) try: ftempin.write(spec.encode("utf8")) ftempin.close() ftempout.close() # call x12 arima p = run_spec(x12path, ftempin.name[:-4], ftempout.name) p.wait() stdout = p.stdout.read() if print_stdout: print(p.stdout.read()) # check for errors errors = _open_and_read(ftempout.name + ".err") _check_errors(errors) # read in results results = _open_and_read(ftempout.name + ".out") seasadj = _open_and_read(ftempout.name + ".d11") trend = _open_and_read(ftempout.name + ".d12") irregular = _open_and_read(ftempout.name + ".d13") finally: try: # sometimes this gives a permission denied error? # not sure why. no process should have these open os.remove(ftempin.name) os.remove(ftempout.name) except OSError: if os.path.exists(ftempin.name): warn( "Failed to delete resource {0}".format(ftempin.name), IOWarning, ) if os.path.exists(ftempout.name): warn( "Failed to delete resource {0}".format(ftempout.name), IOWarning, ) seasadj = _convert_out_to_series(seasadj, endog.index, "seasadj") trend = _convert_out_to_series(trend, endog.index, "trend") irregular = _convert_out_to_series(irregular, endog.index, "irregular") # NOTE: there is not likely anything in stdout that's not in results # so may be safe to just suppress and remove it if not retspec: res = X13ArimaAnalysisResult( observed=endog, results=results, seasadj=seasadj, trend=trend, irregular=irregular, stdout=stdout, ) else: res = X13ArimaAnalysisResult( observed=endog, results=results, seasadj=seasadj, trend=trend, irregular=irregular, stdout=stdout, spec=spec, ) return res @deprecate_kwarg("forecast_years", "forecast_periods") def x13_arima_select_order( endog, maxorder=(2, 1), maxdiff=(2, 1), diff=None, exog=None, log=None, outlier=True, trading=False, forecast_periods=None, start=None, freq=None, print_stdout=False, x12path=None, prefer_x13=True, ): """ Perform automatic seasonal ARIMA order identification using x12/x13 ARIMA. Parameters ---------- endog : array_like, pandas.Series The series to model. It is best to use a pandas object with a DatetimeIndex or PeriodIndex. However, you can pass an array-like object. If your object does not have a dates index then ``start`` and ``freq`` are not optional. maxorder : tuple The maximum order of the regular and seasonal ARMA polynomials to examine during the model identification. The order for the regular polynomial must be greater than zero and no larger than 4. The order for the seasonal polynomial may be 1 or 2. maxdiff : tuple The maximum orders for regular and seasonal differencing in the automatic differencing procedure. Acceptable inputs for regular differencing are 1 and 2. The maximum order for seasonal differencing is 1. If ``diff`` is specified then ``maxdiff`` should be None. Otherwise, ``diff`` will be ignored. See also ``diff``. diff : tuple Fixes the orders of differencing for the regular and seasonal differencing. Regular differencing may be 0, 1, or 2. Seasonal differencing may be 0 or 1. ``maxdiff`` must be None, otherwise ``diff`` is ignored. exog : array_like Exogenous variables. log : bool or None If None, it is automatically determined whether to log the series or not. If False, logs are not taken. If True, logs are taken. outlier : bool Whether or not outliers are tested for and corrected, if detected. trading : bool Whether or not trading day effects are tested for. forecast_periods : int Number of forecasts produced. The default is None. start : str, datetime Must be given if ``endog`` does not have date information in its index. Anything accepted by pandas.DatetimeIndex for the start value. freq : str Must be givein if ``endog`` does not have date information in its index. Anything accepted by pandas.DatetimeIndex for the freq value. print_stdout : bool The stdout from X12/X13 is suppressed. To print it out, set this to True. Default is False. x12path : str or None The path to x12 or x13 binary. If None, the program will attempt to find x13as or x12a on the PATH or by looking at X13PATH or X12PATH depending on the value of prefer_x13. prefer_x13 : bool If True, will look for x13as first and will fallback to the X13PATH environmental variable. If False, will look for x12a first and will fallback to the X12PATH environmental variable. If x12path points to the path for the X12/X13 binary, it does nothing. Returns ------- Bunch A bunch object containing the listed attributes. - order : tuple The regular order. - sorder : tuple The seasonal order. - include_mean : bool Whether to include a mean or not. - results : str The full results from the X12/X13 analysis. - stdout : str The captured stdout from the X12/X13 analysis. Notes ----- This works by creating a specification file, writing it to a temporary directory, invoking X12/X13 in a subprocess, and reading the output back in. """ results = x13_arima_analysis( endog, x12path=x12path, exog=exog, log=log, outlier=outlier, trading=trading, forecast_periods=forecast_periods, maxorder=maxorder, maxdiff=maxdiff, diff=diff, start=start, freq=freq, prefer_x13=prefer_x13, ) model = re.search( "(?<=Final automatic model choice : ).*", results.results ) order = model.group() if re.search("Mean is not significant", results.results): include_mean = False elif re.search("Constant", results.results): include_mean = True else: include_mean = False order, sorder = _clean_order(order) res = Bunch( order=order, sorder=sorder, include_mean=include_mean, results=results.results, stdout=results.stdout, ) return res class X13ArimaAnalysisResult(object): def __init__(self, **kwargs): for key, value in kwargs.items(): setattr(self, key, value) def plot(self): from statsmodels.graphics.utils import _import_mpl plt = _import_mpl() fig, axes = plt.subplots(4, 1, sharex=True) self.observed.plot(ax=axes[0], legend=False) axes[0].set_ylabel("Observed") self.seasadj.plot(ax=axes[1], legend=False) axes[1].set_ylabel("Seas. Adjusted") self.trend.plot(ax=axes[2], legend=False) axes[2].set_ylabel("Trend") self.irregular.plot(ax=axes[3], legend=False) axes[3].set_ylabel("Irregular") fig.tight_layout() return fig