from sympy.combinatorics.free_groups import free_group from sympy.printing.defaults import DefaultPrinting from itertools import chain, product from bisect import bisect_left ############################################################################### # COSET TABLE # ############################################################################### class CosetTable(DefaultPrinting): # coset_table: Mathematically a coset table # represented using a list of lists # alpha: Mathematically a coset (precisely, a live coset) # represented by an integer between i with 1 <= i <= n # alpha in c # x: Mathematically an element of "A" (set of generators and # their inverses), represented using "FpGroupElement" # fp_grp: Finitely Presented Group with < X|R > as presentation. # H: subgroup of fp_grp. # NOTE: We start with H as being only a list of words in generators # of "fp_grp". Since `.subgroup` method has not been implemented. r""" Properties ========== [1] `0 \in \Omega` and `\tau(1) = \epsilon` [2] `\alpha^x = \beta \Leftrightarrow \beta^{x^{-1}} = \alpha` [3] If `\alpha^x = \beta`, then `H \tau(\alpha)x = H \tau(\beta)` [4] `\forall \alpha \in \Omega, 1^{\tau(\alpha)} = \alpha` References ========== .. [1] Holt, D., Eick, B., O'Brien, E. "Handbook of Computational Group Theory" .. [2] John J. Cannon; Lucien A. Dimino; George Havas; Jane M. Watson Mathematics of Computation, Vol. 27, No. 123. (Jul., 1973), pp. 463-490. "Implementation and Analysis of the Todd-Coxeter Algorithm" """ # default limit for the number of cosets allowed in a # coset enumeration. coset_table_max_limit = 4096000 # limit for the current instance coset_table_limit = None # maximum size of deduction stack above or equal to # which it is emptied max_stack_size = 100 def __init__(self, fp_grp, subgroup, max_cosets=None): if not max_cosets: max_cosets = CosetTable.coset_table_max_limit self.fp_group = fp_grp self.subgroup = subgroup self.coset_table_limit = max_cosets # "p" is setup independent of Omega and n self.p = [0] # a list of the form `[gen_1, gen_1^{-1}, ... , gen_k, gen_k^{-1}]` self.A = list(chain.from_iterable((gen, gen**-1) \ for gen in self.fp_group.generators)) #P[alpha, x] Only defined when alpha^x is defined. self.P = [[None]*len(self.A)] # the mathematical coset table which is a list of lists self.table = [[None]*len(self.A)] self.A_dict = {x: self.A.index(x) for x in self.A} self.A_dict_inv = {} for x, index in self.A_dict.items(): if index % 2 == 0: self.A_dict_inv[x] = self.A_dict[x] + 1 else: self.A_dict_inv[x] = self.A_dict[x] - 1 # used in the coset-table based method of coset enumeration. Each of # the element is called a "deduction" which is the form (alpha, x) whenever # a value is assigned to alpha^x during a definition or "deduction process" self.deduction_stack = [] # Attributes for modified methods. H = self.subgroup self._grp = free_group(', ' .join(["a_%d" % i for i in range(len(H))]))[0] self.P = [[None]*len(self.A)] self.p_p = {} @property def omega(self): """Set of live cosets. """ return [coset for coset in range(len(self.p)) if self.p[coset] == coset] def copy(self): """ Return a shallow copy of Coset Table instance ``self``. """ self_copy = self.__class__(self.fp_group, self.subgroup) self_copy.table = [list(perm_rep) for perm_rep in self.table] self_copy.p = list(self.p) self_copy.deduction_stack = list(self.deduction_stack) return self_copy def __str__(self): return "Coset Table on %s with %s as subgroup generators" \ % (self.fp_group, self.subgroup) __repr__ = __str__ @property def n(self): """The number `n` represents the length of the sublist containing the live cosets. """ if not self.table: return 0 return max(self.omega) + 1 # Pg. 152 [1] def is_complete(self): r""" The coset table is called complete if it has no undefined entries on the live cosets; that is, `\alpha^x` is defined for all `\alpha \in \Omega` and `x \in A`. """ return not any(None in self.table[coset] for coset in self.omega) # Pg. 153 [1] def define(self, alpha, x, modified=False): r""" This routine is used in the relator-based strategy of Todd-Coxeter algorithm if some `\alpha^x` is undefined. We check whether there is space available for defining a new coset. If there is enough space then we remedy this by adjoining a new coset `\beta` to `\Omega` (i.e to set of live cosets) and put that equal to `\alpha^x`, then make an assignment satisfying Property[1]. If there is not enough space then we halt the Coset Table creation. The maximum amount of space that can be used by Coset Table can be manipulated using the class variable ``CosetTable.coset_table_max_limit``. See Also ======== define_c """ A = self.A table = self.table len_table = len(table) if len_table >= self.coset_table_limit: # abort the further generation of cosets raise ValueError("the coset enumeration has defined more than " "%s cosets. Try with a greater value max number of cosets " % self.coset_table_limit) table.append([None]*len(A)) self.P.append([None]*len(self.A)) # beta is the new coset generated beta = len_table self.p.append(beta) table[alpha][self.A_dict[x]] = beta table[beta][self.A_dict_inv[x]] = alpha # P[alpha][x] = epsilon, P[beta][x**-1] = epsilon if modified: self.P[alpha][self.A_dict[x]] = self._grp.identity self.P[beta][self.A_dict_inv[x]] = self._grp.identity self.p_p[beta] = self._grp.identity def define_c(self, alpha, x): r""" A variation of ``define`` routine, described on Pg. 165 [1], used in the coset table-based strategy of Todd-Coxeter algorithm. It differs from ``define`` routine in that for each definition it also adds the tuple `(\alpha, x)` to the deduction stack. See Also ======== define """ A = self.A table = self.table len_table = len(table) if len_table >= self.coset_table_limit: # abort the further generation of cosets raise ValueError("the coset enumeration has defined more than " "%s cosets. Try with a greater value max number of cosets " % self.coset_table_limit) table.append([None]*len(A)) # beta is the new coset generated beta = len_table self.p.append(beta) table[alpha][self.A_dict[x]] = beta table[beta][self.A_dict_inv[x]] = alpha # append to deduction stack self.deduction_stack.append((alpha, x)) def scan_c(self, alpha, word): """ A variation of ``scan`` routine, described on pg. 165 of [1], which puts at tuple, whenever a deduction occurs, to deduction stack. See Also ======== scan, scan_check, scan_and_fill, scan_and_fill_c """ # alpha is an integer representing a "coset" # since scanning can be in two cases # 1. for alpha=0 and w in Y (i.e generating set of H) # 2. alpha in Omega (set of live cosets), w in R (relators) A_dict = self.A_dict A_dict_inv = self.A_dict_inv table = self.table f = alpha i = 0 r = len(word) b = alpha j = r - 1 # list of union of generators and their inverses while i <= j and table[f][A_dict[word[i]]] is not None: f = table[f][A_dict[word[i]]] i += 1 if i > j: if f != b: self.coincidence_c(f, b) return while j >= i and table[b][A_dict_inv[word[j]]] is not None: b = table[b][A_dict_inv[word[j]]] j -= 1 if j < i: # we have an incorrect completed scan with coincidence f ~ b # run the "coincidence" routine self.coincidence_c(f, b) elif j == i: # deduction process table[f][A_dict[word[i]]] = b table[b][A_dict_inv[word[i]]] = f self.deduction_stack.append((f, word[i])) # otherwise scan is incomplete and yields no information # alpha, beta coincide, i.e. alpha, beta represent the pair of cosets where # coincidence occurs def coincidence_c(self, alpha, beta): """ A variation of ``coincidence`` routine used in the coset-table based method of coset enumeration. The only difference being on addition of a new coset in coset table(i.e new coset introduction), then it is appended to ``deduction_stack``. See Also ======== coincidence """ A_dict = self.A_dict A_dict_inv = self.A_dict_inv table = self.table # behaves as a queue q = [] self.merge(alpha, beta, q) while len(q) > 0: gamma = q.pop(0) for x in A_dict: delta = table[gamma][A_dict[x]] if delta is not None: table[delta][A_dict_inv[x]] = None # only line of difference from ``coincidence`` routine self.deduction_stack.append((delta, x**-1)) mu = self.rep(gamma) nu = self.rep(delta) if table[mu][A_dict[x]] is not None: self.merge(nu, table[mu][A_dict[x]], q) elif table[nu][A_dict_inv[x]] is not None: self.merge(mu, table[nu][A_dict_inv[x]], q) else: table[mu][A_dict[x]] = nu table[nu][A_dict_inv[x]] = mu def scan(self, alpha, word, y=None, fill=False, modified=False): r""" ``scan`` performs a scanning process on the input ``word``. It first locates the largest prefix ``s`` of ``word`` for which `\alpha^s` is defined (i.e is not ``None``), ``s`` may be empty. Let ``word=sv``, let ``t`` be the longest suffix of ``v`` for which `\alpha^{t^{-1}}` is defined, and let ``v=ut``. Then three possibilities are there: 1. If ``t=v``, then we say that the scan completes, and if, in addition `\alpha^s = \alpha^{t^{-1}}`, then we say that the scan completes correctly. 2. It can also happen that scan does not complete, but `|u|=1`; that is, the word ``u`` consists of a single generator `x \in A`. In that case, if `\alpha^s = \beta` and `\alpha^{t^{-1}} = \gamma`, then we can set `\beta^x = \gamma` and `\gamma^{x^{-1}} = \beta`. These assignments are known as deductions and enable the scan to complete correctly. 3. See ``coicidence`` routine for explanation of third condition. Notes ===== The code for the procedure of scanning `\alpha \in \Omega` under `w \in A*` is defined on pg. 155 [1] See Also ======== scan_c, scan_check, scan_and_fill, scan_and_fill_c Scan and Fill ============= Performed when the default argument fill=True. Modified Scan ============= Performed when the default argument modified=True """ # alpha is an integer representing a "coset" # since scanning can be in two cases # 1. for alpha=0 and w in Y (i.e generating set of H) # 2. alpha in Omega (set of live cosets), w in R (relators) A_dict = self.A_dict A_dict_inv = self.A_dict_inv table = self.table f = alpha i = 0 r = len(word) b = alpha j = r - 1 b_p = y if modified: f_p = self._grp.identity flag = 0 while fill or flag == 0: flag = 1 while i <= j and table[f][A_dict[word[i]]] is not None: if modified: f_p = f_p*self.P[f][A_dict[word[i]]] f = table[f][A_dict[word[i]]] i += 1 if i > j: if f != b: if modified: self.modified_coincidence(f, b, f_p**-1*y) else: self.coincidence(f, b) return while j >= i and table[b][A_dict_inv[word[j]]] is not None: if modified: b_p = b_p*self.P[b][self.A_dict_inv[word[j]]] b = table[b][A_dict_inv[word[j]]] j -= 1 if j < i: # we have an incorrect completed scan with coincidence f ~ b # run the "coincidence" routine if modified: self.modified_coincidence(f, b, f_p**-1*b_p) else: self.coincidence(f, b) elif j == i: # deduction process table[f][A_dict[word[i]]] = b table[b][A_dict_inv[word[i]]] = f if modified: self.P[f][self.A_dict[word[i]]] = f_p**-1*b_p self.P[b][self.A_dict_inv[word[i]]] = b_p**-1*f_p return elif fill: self.define(f, word[i], modified=modified) # otherwise scan is incomplete and yields no information # used in the low-index subgroups algorithm def scan_check(self, alpha, word): r""" Another version of ``scan`` routine, described on, it checks whether `\alpha` scans correctly under `word`, it is a straightforward modification of ``scan``. ``scan_check`` returns ``False`` (rather than calling ``coincidence``) if the scan completes incorrectly; otherwise it returns ``True``. See Also ======== scan, scan_c, scan_and_fill, scan_and_fill_c """ # alpha is an integer representing a "coset" # since scanning can be in two cases # 1. for alpha=0 and w in Y (i.e generating set of H) # 2. alpha in Omega (set of live cosets), w in R (relators) A_dict = self.A_dict A_dict_inv = self.A_dict_inv table = self.table f = alpha i = 0 r = len(word) b = alpha j = r - 1 while i <= j and table[f][A_dict[word[i]]] is not None: f = table[f][A_dict[word[i]]] i += 1 if i > j: return f == b while j >= i and table[b][A_dict_inv[word[j]]] is not None: b = table[b][A_dict_inv[word[j]]] j -= 1 if j < i: # we have an incorrect completed scan with coincidence f ~ b # return False, instead of calling coincidence routine return False elif j == i: # deduction process table[f][A_dict[word[i]]] = b table[b][A_dict_inv[word[i]]] = f return True def merge(self, k, lamda, q, w=None, modified=False): """ Merge two classes with representatives ``k`` and ``lamda``, described on Pg. 157 [1] (for pseudocode), start by putting ``p[k] = lamda``. It is more efficient to choose the new representative from the larger of the two classes being merged, i.e larger among ``k`` and ``lamda``. procedure ``merge`` performs the merging operation, adds the deleted class representative to the queue ``q``. Parameters ========== 'k', 'lamda' being the two class representatives to be merged. Notes ===== Pg. 86-87 [1] contains a description of this method. See Also ======== coincidence, rep """ p = self.p rep = self.rep phi = rep(k, modified=modified) psi = rep(lamda, modified=modified) if phi != psi: mu = min(phi, psi) v = max(phi, psi) p[v] = mu if modified: if v == phi: self.p_p[phi] = self.p_p[k]**-1*w*self.p_p[lamda] else: self.p_p[psi] = self.p_p[lamda]**-1*w**-1*self.p_p[k] q.append(v) def rep(self, k, modified=False): r""" Parameters ========== `k \in [0 \ldots n-1]`, as for ``self`` only array ``p`` is used Returns ======= Representative of the class containing ``k``. Returns the representative of `\sim` class containing ``k``, it also makes some modification to array ``p`` of ``self`` to ease further computations, described on Pg. 157 [1]. The information on classes under `\sim` is stored in array `p` of ``self`` argument, which will always satisfy the property: `p[\alpha] \sim \alpha` and `p[\alpha]=\alpha \iff \alpha=rep(\alpha)` `\forall \in [0 \ldots n-1]`. So, for `\alpha \in [0 \ldots n-1]`, we find `rep(self, \alpha)` by continually replacing `\alpha` by `p[\alpha]` until it becomes constant (i.e satisfies `p[\alpha] = \alpha`):w To increase the efficiency of later ``rep`` calculations, whenever we find `rep(self, \alpha)=\beta`, we set `p[\gamma] = \beta \forall \gamma \in p-chain` from `\alpha` to `\beta` Notes ===== ``rep`` routine is also described on Pg. 85-87 [1] in Atkinson's algorithm, this results from the fact that ``coincidence`` routine introduces functionality similar to that introduced by the ``minimal_block`` routine on Pg. 85-87 [1]. See Also ======== coincidence, merge """ p = self.p lamda = k rho = p[lamda] if modified: s = p[:] while rho != lamda: if modified: s[rho] = lamda lamda = rho rho = p[lamda] if modified: rho = s[lamda] while rho != k: mu = rho rho = s[mu] p[rho] = lamda self.p_p[rho] = self.p_p[rho]*self.p_p[mu] else: mu = k rho = p[mu] while rho != lamda: p[mu] = lamda mu = rho rho = p[mu] return lamda # alpha, beta coincide, i.e. alpha, beta represent the pair of cosets # where coincidence occurs def coincidence(self, alpha, beta, w=None, modified=False): r""" The third situation described in ``scan`` routine is handled by this routine, described on Pg. 156-161 [1]. The unfortunate situation when the scan completes but not correctly, then ``coincidence`` routine is run. i.e when for some `i` with `1 \le i \le r+1`, we have `w=st` with `s = x_1 x_2 \dots x_{i-1}`, `t = x_i x_{i+1} \dots x_r`, and `\beta = \alpha^s` and `\gamma = \alpha^{t-1}` are defined but unequal. This means that `\beta` and `\gamma` represent the same coset of `H` in `G`. Described on Pg. 156 [1]. ``rep`` See Also ======== scan """ A_dict = self.A_dict A_dict_inv = self.A_dict_inv table = self.table # behaves as a queue q = [] if modified: self.modified_merge(alpha, beta, w, q) else: self.merge(alpha, beta, q) while len(q) > 0: gamma = q.pop(0) for x in A_dict: delta = table[gamma][A_dict[x]] if delta is not None: table[delta][A_dict_inv[x]] = None mu = self.rep(gamma, modified=modified) nu = self.rep(delta, modified=modified) if table[mu][A_dict[x]] is not None: if modified: v = self.p_p[delta]**-1*self.P[gamma][self.A_dict[x]]**-1 v = v*self.p_p[gamma]*self.P[mu][self.A_dict[x]] self.modified_merge(nu, table[mu][self.A_dict[x]], v, q) else: self.merge(nu, table[mu][A_dict[x]], q) elif table[nu][A_dict_inv[x]] is not None: if modified: v = self.p_p[gamma]**-1*self.P[gamma][self.A_dict[x]] v = v*self.p_p[delta]*self.P[mu][self.A_dict_inv[x]] self.modified_merge(mu, table[nu][self.A_dict_inv[x]], v, q) else: self.merge(mu, table[nu][A_dict_inv[x]], q) else: table[mu][A_dict[x]] = nu table[nu][A_dict_inv[x]] = mu if modified: v = self.p_p[gamma]**-1*self.P[gamma][self.A_dict[x]]*self.p_p[delta] self.P[mu][self.A_dict[x]] = v self.P[nu][self.A_dict_inv[x]] = v**-1 # method used in the HLT strategy def scan_and_fill(self, alpha, word): """ A modified version of ``scan`` routine used in the relator-based method of coset enumeration, described on pg. 162-163 [1], which follows the idea that whenever the procedure is called and the scan is incomplete then it makes new definitions to enable the scan to complete; i.e it fills in the gaps in the scan of the relator or subgroup generator. """ self.scan(alpha, word, fill=True) def scan_and_fill_c(self, alpha, word): """ A modified version of ``scan`` routine, described on Pg. 165 second para. [1], with modification similar to that of ``scan_anf_fill`` the only difference being it calls the coincidence procedure used in the coset-table based method i.e. the routine ``coincidence_c`` is used. See Also ======== scan, scan_and_fill """ A_dict = self.A_dict A_dict_inv = self.A_dict_inv table = self.table r = len(word) f = alpha i = 0 b = alpha j = r - 1 # loop until it has filled the alpha row in the table. while True: # do the forward scanning while i <= j and table[f][A_dict[word[i]]] is not None: f = table[f][A_dict[word[i]]] i += 1 if i > j: if f != b: self.coincidence_c(f, b) return # forward scan was incomplete, scan backwards while j >= i and table[b][A_dict_inv[word[j]]] is not None: b = table[b][A_dict_inv[word[j]]] j -= 1 if j < i: self.coincidence_c(f, b) elif j == i: table[f][A_dict[word[i]]] = b table[b][A_dict_inv[word[i]]] = f self.deduction_stack.append((f, word[i])) else: self.define_c(f, word[i]) # method used in the HLT strategy def look_ahead(self): """ When combined with the HLT method this is known as HLT+Lookahead method of coset enumeration, described on pg. 164 [1]. Whenever ``define`` aborts due to lack of space available this procedure is executed. This routine helps in recovering space resulting from "coincidence" of cosets. """ R = self.fp_group.relators p = self.p # complete scan all relators under all cosets(obviously live) # without making new definitions for beta in self.omega: for w in R: self.scan(beta, w) if p[beta] < beta: break # Pg. 166 def process_deductions(self, R_c_x, R_c_x_inv): """ Processes the deductions that have been pushed onto ``deduction_stack``, described on Pg. 166 [1] and is used in coset-table based enumeration. See Also ======== deduction_stack """ p = self.p table = self.table while len(self.deduction_stack) > 0: if len(self.deduction_stack) >= CosetTable.max_stack_size: self.look_ahead() del self.deduction_stack[:] continue else: alpha, x = self.deduction_stack.pop() if p[alpha] == alpha: for w in R_c_x: self.scan_c(alpha, w) if p[alpha] < alpha: break beta = table[alpha][self.A_dict[x]] if beta is not None and p[beta] == beta: for w in R_c_x_inv: self.scan_c(beta, w) if p[beta] < beta: break def process_deductions_check(self, R_c_x, R_c_x_inv): """ A variation of ``process_deductions``, this calls ``scan_check`` wherever ``process_deductions`` calls ``scan``, described on Pg. [1]. See Also ======== process_deductions """ table = self.table while len(self.deduction_stack) > 0: alpha, x = self.deduction_stack.pop() for w in R_c_x: if not self.scan_check(alpha, w): return False beta = table[alpha][self.A_dict[x]] if beta is not None: for w in R_c_x_inv: if not self.scan_check(beta, w): return False return True def switch(self, beta, gamma): r"""Switch the elements `\beta, \gamma \in \Omega` of ``self``, used by the ``standardize`` procedure, described on Pg. 167 [1]. See Also ======== standardize """ A = self.A A_dict = self.A_dict table = self.table for x in A: z = table[gamma][A_dict[x]] table[gamma][A_dict[x]] = table[beta][A_dict[x]] table[beta][A_dict[x]] = z for alpha in range(len(self.p)): if self.p[alpha] == alpha: if table[alpha][A_dict[x]] == beta: table[alpha][A_dict[x]] = gamma elif table[alpha][A_dict[x]] == gamma: table[alpha][A_dict[x]] = beta def standardize(self): r""" A coset table is standardized if when running through the cosets and within each coset through the generator images (ignoring generator inverses), the cosets appear in order of the integers `0, 1, \dots, n`. "Standardize" reorders the elements of `\Omega` such that, if we scan the coset table first by elements of `\Omega` and then by elements of A, then the cosets occur in ascending order. ``standardize()`` is used at the end of an enumeration to permute the cosets so that they occur in some sort of standard order. Notes ===== procedure is described on pg. 167-168 [1], it also makes use of the ``switch`` routine to replace by smaller integer value. Examples ======== >>> from sympy.combinatorics import free_group >>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r >>> F, x, y = free_group("x, y") # Example 5.3 from [1] >>> f = FpGroup(F, [x**2*y**2, x**3*y**5]) >>> C = coset_enumeration_r(f, []) >>> C.compress() >>> C.table [[1, 3, 1, 3], [2, 0, 2, 0], [3, 1, 3, 1], [0, 2, 0, 2]] >>> C.standardize() >>> C.table [[1, 2, 1, 2], [3, 0, 3, 0], [0, 3, 0, 3], [2, 1, 2, 1]] """ A = self.A A_dict = self.A_dict gamma = 1 for alpha, x in product(range(self.n), A): beta = self.table[alpha][A_dict[x]] if beta >= gamma: if beta > gamma: self.switch(gamma, beta) gamma += 1 if gamma == self.n: return # Compression of a Coset Table def compress(self): """Removes the non-live cosets from the coset table, described on pg. 167 [1]. """ gamma = -1 A = self.A A_dict = self.A_dict A_dict_inv = self.A_dict_inv table = self.table chi = tuple([i for i in range(len(self.p)) if self.p[i] != i]) for alpha in self.omega: gamma += 1 if gamma != alpha: # replace alpha by gamma in coset table for x in A: beta = table[alpha][A_dict[x]] table[gamma][A_dict[x]] = beta table[beta][A_dict_inv[x]] == gamma # all the cosets in the table are live cosets self.p = list(range(gamma + 1)) # delete the useless columns del table[len(self.p):] # re-define values for row in table: for j in range(len(self.A)): row[j] -= bisect_left(chi, row[j]) def conjugates(self, R): R_c = list(chain.from_iterable((rel.cyclic_conjugates(), \ (rel**-1).cyclic_conjugates()) for rel in R)) R_set = set() for conjugate in R_c: R_set = R_set.union(conjugate) R_c_list = [] for x in self.A: r = {word for word in R_set if word[0] == x} R_c_list.append(r) R_set.difference_update(r) return R_c_list def coset_representative(self, coset): ''' Compute the coset representative of a given coset. Examples ======== >>> from sympy.combinatorics import free_group >>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r >>> F, x, y = free_group("x, y") >>> f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y]) >>> C = coset_enumeration_r(f, [x]) >>> C.compress() >>> C.table [[0, 0, 1, 2], [1, 1, 2, 0], [2, 2, 0, 1]] >>> C.coset_representative(0) >>> C.coset_representative(1) y >>> C.coset_representative(2) y**-1 ''' for x in self.A: gamma = self.table[coset][self.A_dict[x]] if coset == 0: return self.fp_group.identity if gamma < coset: return self.coset_representative(gamma)*x**-1 ############################## # Modified Methods # ############################## def modified_define(self, alpha, x): r""" Define a function p_p from from [1..n] to A* as an additional component of the modified coset table. Parameters ========== \alpha \in \Omega x \in A* See Also ======== define """ self.define(alpha, x, modified=True) def modified_scan(self, alpha, w, y, fill=False): r""" Parameters ========== \alpha \in \Omega w \in A* y \in (YUY^-1) fill -- `modified_scan_and_fill` when set to True. See Also ======== scan """ self.scan(alpha, w, y=y, fill=fill, modified=True) def modified_scan_and_fill(self, alpha, w, y): self.modified_scan(alpha, w, y, fill=True) def modified_merge(self, k, lamda, w, q): r""" Parameters ========== 'k', 'lamda' -- the two class representatives to be merged. q -- queue of length l of elements to be deleted from `\Omega` *. w -- Word in (YUY^-1) See Also ======== merge """ self.merge(k, lamda, q, w=w, modified=True) def modified_rep(self, k): r""" Parameters ========== `k \in [0 \ldots n-1]` See Also ======== rep """ self.rep(k, modified=True) def modified_coincidence(self, alpha, beta, w): r""" Parameters ========== A coincident pair `\alpha, \beta \in \Omega, w \in Y \cup Y^{-1}` See Also ======== coincidence """ self.coincidence(alpha, beta, w=w, modified=True) ############################################################################### # COSET ENUMERATION # ############################################################################### # relator-based method def coset_enumeration_r(fp_grp, Y, max_cosets=None, draft=None, incomplete=False, modified=False): """ This is easier of the two implemented methods of coset enumeration. and is often called the HLT method, after Hazelgrove, Leech, Trotter The idea is that we make use of ``scan_and_fill`` makes new definitions whenever the scan is incomplete to enable the scan to complete; this way we fill in the gaps in the scan of the relator or subgroup generator, that's why the name relator-based method. An instance of `CosetTable` for `fp_grp` can be passed as the keyword argument `draft` in which case the coset enumeration will start with that instance and attempt to complete it. When `incomplete` is `True` and the function is unable to complete for some reason, the partially complete table will be returned. # TODO: complete the docstring See Also ======== scan_and_fill, Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r >>> F, x, y = free_group("x, y") # Example 5.1 from [1] >>> f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y]) >>> C = coset_enumeration_r(f, [x]) >>> for i in range(len(C.p)): ... if C.p[i] == i: ... print(C.table[i]) [0, 0, 1, 2] [1, 1, 2, 0] [2, 2, 0, 1] >>> C.p [0, 1, 2, 1, 1] # Example from exercises Q2 [1] >>> f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3]) >>> C = coset_enumeration_r(f, []) >>> C.compress(); C.standardize() >>> C.table [[1, 2, 3, 4], [5, 0, 6, 7], [0, 5, 7, 6], [7, 6, 5, 0], [6, 7, 0, 5], [2, 1, 4, 3], [3, 4, 2, 1], [4, 3, 1, 2]] # Example 5.2 >>> f = FpGroup(F, [x**2, y**3, (x*y)**3]) >>> Y = [x*y] >>> C = coset_enumeration_r(f, Y) >>> for i in range(len(C.p)): ... if C.p[i] == i: ... print(C.table[i]) [1, 1, 2, 1] [0, 0, 0, 2] [3, 3, 1, 0] [2, 2, 3, 3] # Example 5.3 >>> f = FpGroup(F, [x**2*y**2, x**3*y**5]) >>> Y = [] >>> C = coset_enumeration_r(f, Y) >>> for i in range(len(C.p)): ... if C.p[i] == i: ... print(C.table[i]) [1, 3, 1, 3] [2, 0, 2, 0] [3, 1, 3, 1] [0, 2, 0, 2] # Example 5.4 >>> F, a, b, c, d, e = free_group("a, b, c, d, e") >>> f = FpGroup(F, [a*b*c**-1, b*c*d**-1, c*d*e**-1, d*e*a**-1, e*a*b**-1]) >>> Y = [a] >>> C = coset_enumeration_r(f, Y) >>> for i in range(len(C.p)): ... if C.p[i] == i: ... print(C.table[i]) [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # example of "compress" method >>> C.compress() >>> C.table [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] # Exercises Pg. 161, Q2. >>> F, x, y = free_group("x, y") >>> f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3]) >>> Y = [] >>> C = coset_enumeration_r(f, Y) >>> C.compress() >>> C.standardize() >>> C.table [[1, 2, 3, 4], [5, 0, 6, 7], [0, 5, 7, 6], [7, 6, 5, 0], [6, 7, 0, 5], [2, 1, 4, 3], [3, 4, 2, 1], [4, 3, 1, 2]] # John J. Cannon; Lucien A. Dimino; George Havas; Jane M. Watson # Mathematics of Computation, Vol. 27, No. 123. (Jul., 1973), pp. 463-490 # from 1973chwd.pdf # Table 1. Ex. 1 >>> F, r, s, t = free_group("r, s, t") >>> E1 = FpGroup(F, [t**-1*r*t*r**-2, r**-1*s*r*s**-2, s**-1*t*s*t**-2]) >>> C = coset_enumeration_r(E1, [r]) >>> for i in range(len(C.p)): ... if C.p[i] == i: ... print(C.table[i]) [0, 0, 0, 0, 0, 0] Ex. 2 >>> F, a, b = free_group("a, b") >>> Cox = FpGroup(F, [a**6, b**6, (a*b)**2, (a**2*b**2)**2, (a**3*b**3)**5]) >>> C = coset_enumeration_r(Cox, [a]) >>> index = 0 >>> for i in range(len(C.p)): ... if C.p[i] == i: ... index += 1 >>> index 500 # Ex. 3 >>> F, a, b = free_group("a, b") >>> B_2_4 = FpGroup(F, [a**4, b**4, (a*b)**4, (a**-1*b)**4, (a**2*b)**4, \ (a*b**2)**4, (a**2*b**2)**4, (a**-1*b*a*b)**4, (a*b**-1*a*b)**4]) >>> C = coset_enumeration_r(B_2_4, [a]) >>> index = 0 >>> for i in range(len(C.p)): ... if C.p[i] == i: ... index += 1 >>> index 1024 References ========== .. [1] Holt, D., Eick, B., O'Brien, E. "Handbook of computational group theory" """ # 1. Initialize a coset table C for < X|R > C = CosetTable(fp_grp, Y, max_cosets=max_cosets) # Define coset table methods. if modified: _scan_and_fill = C.modified_scan_and_fill _define = C.modified_define else: _scan_and_fill = C.scan_and_fill _define = C.define if draft: C.table = draft.table[:] C.p = draft.p[:] R = fp_grp.relators A_dict = C.A_dict p = C.p for i in range(0, len(Y)): if modified: _scan_and_fill(0, Y[i], C._grp.generators[i]) else: _scan_and_fill(0, Y[i]) alpha = 0 while alpha < C.n: if p[alpha] == alpha: try: for w in R: if modified: _scan_and_fill(alpha, w, C._grp.identity) else: _scan_and_fill(alpha, w) # if alpha was eliminated during the scan then break if p[alpha] < alpha: break if p[alpha] == alpha: for x in A_dict: if C.table[alpha][A_dict[x]] is None: _define(alpha, x) except ValueError as e: if incomplete: return C raise e alpha += 1 return C def modified_coset_enumeration_r(fp_grp, Y, max_cosets=None, draft=None, incomplete=False): r""" Introduce a new set of symbols y \in Y that correspond to the generators of the subgroup. Store the elements of Y as a word P[\alpha, x] and compute the coset table similar to that of the regular coset enumeration methods. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup >>> from sympy.combinatorics.coset_table import modified_coset_enumeration_r >>> F, x, y = free_group("x, y") >>> f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y]) >>> C = modified_coset_enumeration_r(f, [x]) >>> C.table [[0, 0, 1, 2], [1, 1, 2, 0], [2, 2, 0, 1], [None, 1, None, None], [1, 3, None, None]] See Also ======== coset_enumertation_r References ========== .. [1] Holt, D., Eick, B., O'Brien, E., "Handbook of Computational Group Theory", Section 5.3.2 """ return coset_enumeration_r(fp_grp, Y, max_cosets=max_cosets, draft=draft, incomplete=incomplete, modified=True) # Pg. 166 # coset-table based method def coset_enumeration_c(fp_grp, Y, max_cosets=None, draft=None, incomplete=False): """ >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_c >>> F, x, y = free_group("x, y") >>> f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y]) >>> C = coset_enumeration_c(f, [x]) >>> C.table [[0, 0, 1, 2], [1, 1, 2, 0], [2, 2, 0, 1]] """ # Initialize a coset table C for < X|R > X = fp_grp.generators R = fp_grp.relators C = CosetTable(fp_grp, Y, max_cosets=max_cosets) if draft: C.table = draft.table[:] C.p = draft.p[:] C.deduction_stack = draft.deduction_stack for alpha, x in product(range(len(C.table)), X): if C.table[alpha][C.A_dict[x]] is not None: C.deduction_stack.append((alpha, x)) A = C.A # replace all the elements by cyclic reductions R_cyc_red = [rel.identity_cyclic_reduction() for rel in R] R_c = list(chain.from_iterable((rel.cyclic_conjugates(), (rel**-1).cyclic_conjugates()) \ for rel in R_cyc_red)) R_set = set() for conjugate in R_c: R_set = R_set.union(conjugate) # a list of subsets of R_c whose words start with "x". R_c_list = [] for x in C.A: r = {word for word in R_set if word[0] == x} R_c_list.append(r) R_set.difference_update(r) for w in Y: C.scan_and_fill_c(0, w) for x in A: C.process_deductions(R_c_list[C.A_dict[x]], R_c_list[C.A_dict_inv[x]]) alpha = 0 while alpha < len(C.table): if C.p[alpha] == alpha: try: for x in C.A: if C.p[alpha] != alpha: break if C.table[alpha][C.A_dict[x]] is None: C.define_c(alpha, x) C.process_deductions(R_c_list[C.A_dict[x]], R_c_list[C.A_dict_inv[x]]) except ValueError as e: if incomplete: return C raise e alpha += 1 return C