from itertools import permutations from sympy.core.expr import unchanged from sympy.core.numbers import Integer from sympy.core.relational import Eq from sympy.core.symbol import Symbol from sympy.core.singleton import S from sympy.combinatorics.permutations import \ Permutation, _af_parity, _af_rmul, _af_rmuln, AppliedPermutation, Cycle from sympy.printing import sstr, srepr, pretty, latex from sympy.testing.pytest import raises, warns_deprecated_sympy rmul = Permutation.rmul a = Symbol('a', integer=True) def test_Permutation(): # don't auto fill 0 raises(ValueError, lambda: Permutation([1])) p = Permutation([0, 1, 2, 3]) # call as bijective assert [p(i) for i in range(p.size)] == list(p) # call as operator assert p(list(range(p.size))) == list(p) # call as function assert list(p(1, 2)) == [0, 2, 1, 3] raises(TypeError, lambda: p(-1)) raises(TypeError, lambda: p(5)) # conversion to list assert list(p) == list(range(4)) assert Permutation(size=4) == Permutation(3) assert Permutation(Permutation(3), size=5) == Permutation(4) # cycle form with size assert Permutation([[1, 2]], size=4) == Permutation([[1, 2], [0], [3]]) # random generation assert Permutation.random(2) in (Permutation([1, 0]), Permutation([0, 1])) p = Permutation([2, 5, 1, 6, 3, 0, 4]) q = Permutation([[1], [0, 3, 5, 6, 2, 4]]) assert len({p, p}) == 1 r = Permutation([1, 3, 2, 0, 4, 6, 5]) ans = Permutation(_af_rmuln(*[w.array_form for w in (p, q, r)])).array_form assert rmul(p, q, r).array_form == ans # make sure no other permutation of p, q, r could have given # that answer for a, b, c in permutations((p, q, r)): if (a, b, c) == (p, q, r): continue assert rmul(a, b, c).array_form != ans assert p.support() == list(range(7)) assert q.support() == [0, 2, 3, 4, 5, 6] assert Permutation(p.cyclic_form).array_form == p.array_form assert p.cardinality == 5040 assert q.cardinality == 5040 assert q.cycles == 2 assert rmul(q, p) == Permutation([4, 6, 1, 2, 5, 3, 0]) assert rmul(p, q) == Permutation([6, 5, 3, 0, 2, 4, 1]) assert _af_rmul(p.array_form, q.array_form) == \ [6, 5, 3, 0, 2, 4, 1] assert rmul(Permutation([[1, 2, 3], [0, 4]]), Permutation([[1, 2, 4], [0], [3]])).cyclic_form == \ [[0, 4, 2], [1, 3]] assert q.array_form == [3, 1, 4, 5, 0, 6, 2] assert q.cyclic_form == [[0, 3, 5, 6, 2, 4]] assert q.full_cyclic_form == [[0, 3, 5, 6, 2, 4], [1]] assert p.cyclic_form == [[0, 2, 1, 5], [3, 6, 4]] t = p.transpositions() assert t == [(0, 5), (0, 1), (0, 2), (3, 4), (3, 6)] assert Permutation.rmul(*[Permutation(Cycle(*ti)) for ti in (t)]) assert Permutation([1, 0]).transpositions() == [(0, 1)] assert p**13 == p assert q**0 == Permutation(list(range(q.size))) assert q**-2 == ~q**2 assert q**2 == Permutation([5, 1, 0, 6, 3, 2, 4]) assert q**3 == q**2*q assert q**4 == q**2*q**2 a = Permutation(1, 3) b = Permutation(2, 0, 3) I = Permutation(3) assert ~a == a**-1 assert a*~a == I assert a*b**-1 == a*~b ans = Permutation(0, 5, 3, 1, 6)(2, 4) assert (p + q.rank()).rank() == ans.rank() assert (p + q.rank())._rank == ans.rank() assert (q + p.rank()).rank() == ans.rank() raises(TypeError, lambda: p + Permutation(list(range(10)))) assert (p - q.rank()).rank() == Permutation(0, 6, 3, 1, 2, 5, 4).rank() assert p.rank() - q.rank() < 0 # for coverage: make sure mod is used assert (q - p.rank()).rank() == Permutation(1, 4, 6, 2)(3, 5).rank() assert p*q == Permutation(_af_rmuln(*[list(w) for w in (q, p)])) assert p*Permutation([]) == p assert Permutation([])*p == p assert p*Permutation([[0, 1]]) == Permutation([2, 5, 0, 6, 3, 1, 4]) assert Permutation([[0, 1]])*p == Permutation([5, 2, 1, 6, 3, 0, 4]) pq = p ^ q assert pq == Permutation([5, 6, 0, 4, 1, 2, 3]) assert pq == rmul(q, p, ~q) qp = q ^ p assert qp == Permutation([4, 3, 6, 2, 1, 5, 0]) assert qp == rmul(p, q, ~p) raises(ValueError, lambda: p ^ Permutation([])) assert p.commutator(q) == Permutation(0, 1, 3, 4, 6, 5, 2) assert q.commutator(p) == Permutation(0, 2, 5, 6, 4, 3, 1) assert p.commutator(q) == ~q.commutator(p) raises(ValueError, lambda: p.commutator(Permutation([]))) assert len(p.atoms()) == 7 assert q.atoms() == {0, 1, 2, 3, 4, 5, 6} assert p.inversion_vector() == [2, 4, 1, 3, 1, 0] assert q.inversion_vector() == [3, 1, 2, 2, 0, 1] assert Permutation.from_inversion_vector(p.inversion_vector()) == p assert Permutation.from_inversion_vector(q.inversion_vector()).array_form\ == q.array_form raises(ValueError, lambda: Permutation.from_inversion_vector([0, 2])) assert Permutation([i for i in range(500, -1, -1)]).inversions() == 125250 s = Permutation([0, 4, 1, 3, 2]) assert s.parity() == 0 _ = s.cyclic_form # needed to create a value for _cyclic_form assert len(s._cyclic_form) != s.size and s.parity() == 0 assert not s.is_odd assert s.is_even assert Permutation([0, 1, 4, 3, 2]).parity() == 1 assert _af_parity([0, 4, 1, 3, 2]) == 0 assert _af_parity([0, 1, 4, 3, 2]) == 1 s = Permutation([0]) assert s.is_Singleton assert Permutation([]).is_Empty r = Permutation([3, 2, 1, 0]) assert (r**2).is_Identity assert rmul(~p, p).is_Identity assert (~p)**13 == Permutation([5, 2, 0, 4, 6, 1, 3]) assert ~(r**2).is_Identity assert p.max() == 6 assert p.min() == 0 q = Permutation([[6], [5], [0, 1, 2, 3, 4]]) assert q.max() == 4 assert q.min() == 0 p = Permutation([1, 5, 2, 0, 3, 6, 4]) q = Permutation([[1, 2, 3, 5, 6], [0, 4]]) assert p.ascents() == [0, 3, 4] assert q.ascents() == [1, 2, 4] assert r.ascents() == [] assert p.descents() == [1, 2, 5] assert q.descents() == [0, 3, 5] assert Permutation(r.descents()).is_Identity assert p.inversions() == 7 # test the merge-sort with a longer permutation big = list(p) + list(range(p.max() + 1, p.max() + 130)) assert Permutation(big).inversions() == 7 assert p.signature() == -1 assert q.inversions() == 11 assert q.signature() == -1 assert rmul(p, ~p).inversions() == 0 assert rmul(p, ~p).signature() == 1 assert p.order() == 6 assert q.order() == 10 assert (p**(p.order())).is_Identity assert p.length() == 6 assert q.length() == 7 assert r.length() == 4 assert p.runs() == [[1, 5], [2], [0, 3, 6], [4]] assert q.runs() == [[4], [2, 3, 5], [0, 6], [1]] assert r.runs() == [[3], [2], [1], [0]] assert p.index() == 8 assert q.index() == 8 assert r.index() == 3 assert p.get_precedence_distance(q) == q.get_precedence_distance(p) assert p.get_adjacency_distance(q) == p.get_adjacency_distance(q) assert p.get_positional_distance(q) == p.get_positional_distance(q) p = Permutation([0, 1, 2, 3]) q = Permutation([3, 2, 1, 0]) assert p.get_precedence_distance(q) == 6 assert p.get_adjacency_distance(q) == 3 assert p.get_positional_distance(q) == 8 p = Permutation([0, 3, 1, 2, 4]) q = Permutation.josephus(4, 5, 2) assert p.get_adjacency_distance(q) == 3 raises(ValueError, lambda: p.get_adjacency_distance(Permutation([]))) raises(ValueError, lambda: p.get_positional_distance(Permutation([]))) raises(ValueError, lambda: p.get_precedence_distance(Permutation([]))) a = [Permutation.unrank_nonlex(4, i) for i in range(5)] iden = Permutation([0, 1, 2, 3]) for i in range(5): for j in range(i + 1, 5): assert a[i].commutes_with(a[j]) == \ (rmul(a[i], a[j]) == rmul(a[j], a[i])) if a[i].commutes_with(a[j]): assert a[i].commutator(a[j]) == iden assert a[j].commutator(a[i]) == iden a = Permutation(3) b = Permutation(0, 6, 3)(1, 2) assert a.cycle_structure == {1: 4} assert b.cycle_structure == {2: 1, 3: 1, 1: 2} # issue 11130 raises(ValueError, lambda: Permutation(3, size=3)) raises(ValueError, lambda: Permutation([1, 2, 0, 3], size=3)) def test_Permutation_subclassing(): # Subclass that adds permutation application on iterables class CustomPermutation(Permutation): def __call__(self, *i): try: return super().__call__(*i) except TypeError: pass try: perm_obj = i[0] return [self._array_form[j] for j in perm_obj] except TypeError: raise TypeError('unrecognized argument') def __eq__(self, other): if isinstance(other, Permutation): return self._hashable_content() == other._hashable_content() else: return super().__eq__(other) def __hash__(self): return super().__hash__() p = CustomPermutation([1, 2, 3, 0]) q = Permutation([1, 2, 3, 0]) assert p == q raises(TypeError, lambda: q([1, 2])) assert [2, 3] == p([1, 2]) assert type(p * q) == CustomPermutation assert type(q * p) == Permutation # True because q.__mul__(p) is called! # Run all tests for the Permutation class also on the subclass def wrapped_test_Permutation(): # Monkeypatch the class definition in the globals globals()['__Perm'] = globals()['Permutation'] globals()['Permutation'] = CustomPermutation test_Permutation() globals()['Permutation'] = globals()['__Perm'] # Restore del globals()['__Perm'] wrapped_test_Permutation() def test_josephus(): assert Permutation.josephus(4, 6, 1) == Permutation([3, 1, 0, 2, 5, 4]) assert Permutation.josephus(1, 5, 1).is_Identity def test_ranking(): assert Permutation.unrank_lex(5, 10).rank() == 10 p = Permutation.unrank_lex(15, 225) assert p.rank() == 225 p1 = p.next_lex() assert p1.rank() == 226 assert Permutation.unrank_lex(15, 225).rank() == 225 assert Permutation.unrank_lex(10, 0).is_Identity p = Permutation.unrank_lex(4, 23) assert p.rank() == 23 assert p.array_form == [3, 2, 1, 0] assert p.next_lex() is None p = Permutation([1, 5, 2, 0, 3, 6, 4]) q = Permutation([[1, 2, 3, 5, 6], [0, 4]]) a = [Permutation.unrank_trotterjohnson(4, i).array_form for i in range(5)] assert a == [[0, 1, 2, 3], [0, 1, 3, 2], [0, 3, 1, 2], [3, 0, 1, 2], [3, 0, 2, 1] ] assert [Permutation(pa).rank_trotterjohnson() for pa in a] == list(range(5)) assert Permutation([0, 1, 2, 3]).next_trotterjohnson() == \ Permutation([0, 1, 3, 2]) assert q.rank_trotterjohnson() == 2283 assert p.rank_trotterjohnson() == 3389 assert Permutation([1, 0]).rank_trotterjohnson() == 1 a = Permutation(list(range(3))) b = a l = [] tj = [] for i in range(6): l.append(a) tj.append(b) a = a.next_lex() b = b.next_trotterjohnson() assert a == b is None assert {tuple(a) for a in l} == {tuple(a) for a in tj} p = Permutation([2, 5, 1, 6, 3, 0, 4]) q = Permutation([[6], [5], [0, 1, 2, 3, 4]]) assert p.rank() == 1964 assert q.rank() == 870 assert Permutation([]).rank_nonlex() == 0 prank = p.rank_nonlex() assert prank == 1600 assert Permutation.unrank_nonlex(7, 1600) == p qrank = q.rank_nonlex() assert qrank == 41 assert Permutation.unrank_nonlex(7, 41) == Permutation(q.array_form) a = [Permutation.unrank_nonlex(4, i).array_form for i in range(24)] assert a == [ [1, 2, 3, 0], [3, 2, 0, 1], [1, 3, 0, 2], [1, 2, 0, 3], [2, 3, 1, 0], [2, 0, 3, 1], [3, 0, 1, 2], [2, 0, 1, 3], [1, 3, 2, 0], [3, 0, 2, 1], [1, 0, 3, 2], [1, 0, 2, 3], [2, 1, 3, 0], [2, 3, 0, 1], [3, 1, 0, 2], [2, 1, 0, 3], [3, 2, 1, 0], [0, 2, 3, 1], [0, 3, 1, 2], [0, 2, 1, 3], [3, 1, 2, 0], [0, 3, 2, 1], [0, 1, 3, 2], [0, 1, 2, 3]] N = 10 p1 = Permutation(a[0]) for i in range(1, N+1): p1 = p1*Permutation(a[i]) p2 = Permutation.rmul_with_af(*[Permutation(h) for h in a[N::-1]]) assert p1 == p2 ok = [] p = Permutation([1, 0]) for i in range(3): ok.append(p.array_form) p = p.next_nonlex() if p is None: ok.append(None) break assert ok == [[1, 0], [0, 1], None] assert Permutation([3, 2, 0, 1]).next_nonlex() == Permutation([1, 3, 0, 2]) assert [Permutation(pa).rank_nonlex() for pa in a] == list(range(24)) def test_mul(): a, b = [0, 2, 1, 3], [0, 1, 3, 2] assert _af_rmul(a, b) == [0, 2, 3, 1] assert _af_rmuln(a, b, list(range(4))) == [0, 2, 3, 1] assert rmul(Permutation(a), Permutation(b)).array_form == [0, 2, 3, 1] a = Permutation([0, 2, 1, 3]) b = (0, 1, 3, 2) c = (3, 1, 2, 0) assert Permutation.rmul(a, b, c) == Permutation([1, 2, 3, 0]) assert Permutation.rmul(a, c) == Permutation([3, 2, 1, 0]) raises(TypeError, lambda: Permutation.rmul(b, c)) n = 6 m = 8 a = [Permutation.unrank_nonlex(n, i).array_form for i in range(m)] h = list(range(n)) for i in range(m): h = _af_rmul(h, a[i]) h2 = _af_rmuln(*a[:i + 1]) assert h == h2 def test_args(): p = Permutation([(0, 3, 1, 2), (4, 5)]) assert p._cyclic_form is None assert Permutation(p) == p assert p.cyclic_form == [[0, 3, 1, 2], [4, 5]] assert p._array_form == [3, 2, 0, 1, 5, 4] p = Permutation((0, 3, 1, 2)) assert p._cyclic_form is None assert p._array_form == [0, 3, 1, 2] assert Permutation([0]) == Permutation((0, )) assert Permutation([[0], [1]]) == Permutation(((0, ), (1, ))) == \ Permutation(((0, ), [1])) assert Permutation([[1, 2]]) == Permutation([0, 2, 1]) assert Permutation([[1], [4, 2]]) == Permutation([0, 1, 4, 3, 2]) assert Permutation([[1], [4, 2]], size=1) == Permutation([0, 1, 4, 3, 2]) assert Permutation( [[1], [4, 2]], size=6) == Permutation([0, 1, 4, 3, 2, 5]) assert Permutation([[0, 1], [0, 2]]) == Permutation(0, 1, 2) assert Permutation([], size=3) == Permutation([0, 1, 2]) assert Permutation(3).list(5) == [0, 1, 2, 3, 4] assert Permutation(3).list(-1) == [] assert Permutation(5)(1, 2).list(-1) == [0, 2, 1] assert Permutation(5)(1, 2).list() == [0, 2, 1, 3, 4, 5] raises(ValueError, lambda: Permutation([1, 2], [0])) # enclosing brackets needed raises(ValueError, lambda: Permutation([[1, 2], 0])) # enclosing brackets needed on 0 raises(ValueError, lambda: Permutation([1, 1, 0])) raises(ValueError, lambda: Permutation([4, 5], size=10)) # where are 0-3? # but this is ok because cycles imply that only those listed moved assert Permutation(4, 5) == Permutation([0, 1, 2, 3, 5, 4]) def test_Cycle(): assert str(Cycle()) == '()' assert Cycle(Cycle(1,2)) == Cycle(1, 2) assert Cycle(1,2).copy() == Cycle(1,2) assert list(Cycle(1, 3, 2)) == [0, 3, 1, 2] assert Cycle(1, 2)(2, 3) == Cycle(1, 3, 2) assert Cycle(1, 2)(2, 3)(4, 5) == Cycle(1, 3, 2)(4, 5) assert Permutation(Cycle(1, 2)(2, 1, 0, 3)).cyclic_form, Cycle(0, 2, 1) raises(ValueError, lambda: Cycle().list()) assert Cycle(1, 2).list() == [0, 2, 1] assert Cycle(1, 2).list(4) == [0, 2, 1, 3] assert Cycle(3).list(2) == [0, 1] assert Cycle(3).list(6) == [0, 1, 2, 3, 4, 5] assert Permutation(Cycle(1, 2), size=4) == \ Permutation([0, 2, 1, 3]) assert str(Cycle(1, 2)(4, 5)) == '(1 2)(4 5)' assert str(Cycle(1, 2)) == '(1 2)' assert Cycle(Permutation(list(range(3)))) == Cycle() assert Cycle(1, 2).list() == [0, 2, 1] assert Cycle(1, 2).list(4) == [0, 2, 1, 3] assert Cycle().size == 0 raises(ValueError, lambda: Cycle((1, 2))) raises(ValueError, lambda: Cycle(1, 2, 1)) raises(TypeError, lambda: Cycle(1, 2)*{}) raises(ValueError, lambda: Cycle(4)[a]) raises(ValueError, lambda: Cycle(2, -4, 3)) # check round-trip p = Permutation([[1, 2], [4, 3]], size=5) assert Permutation(Cycle(p)) == p def test_from_sequence(): assert Permutation.from_sequence('SymPy') == Permutation(4)(0, 1, 3) assert Permutation.from_sequence('SymPy', key=lambda x: x.lower()) == \ Permutation(4)(0, 2)(1, 3) def test_resize(): p = Permutation(0, 1, 2) assert p.resize(5) == Permutation(0, 1, 2, size=5) assert p.resize(4) == Permutation(0, 1, 2, size=4) assert p.resize(3) == p raises(ValueError, lambda: p.resize(2)) p = Permutation(0, 1, 2)(3, 4)(5, 6) assert p.resize(3) == Permutation(0, 1, 2) raises(ValueError, lambda: p.resize(4)) def test_printing_cyclic(): p1 = Permutation([0, 2, 1]) assert repr(p1) == 'Permutation(1, 2)' assert str(p1) == '(1 2)' p2 = Permutation() assert repr(p2) == 'Permutation()' assert str(p2) == '()' p3 = Permutation([1, 2, 0, 3]) assert repr(p3) == 'Permutation(3)(0, 1, 2)' def test_printing_non_cyclic(): p1 = Permutation([0, 1, 2, 3, 4, 5]) assert srepr(p1, perm_cyclic=False) == 'Permutation([], size=6)' assert sstr(p1, perm_cyclic=False) == 'Permutation([], size=6)' p2 = Permutation([0, 1, 2]) assert srepr(p2, perm_cyclic=False) == 'Permutation([0, 1, 2])' assert sstr(p2, perm_cyclic=False) == 'Permutation([0, 1, 2])' p3 = Permutation([0, 2, 1]) assert srepr(p3, perm_cyclic=False) == 'Permutation([0, 2, 1])' assert sstr(p3, perm_cyclic=False) == 'Permutation([0, 2, 1])' p4 = Permutation([0, 1, 3, 2, 4, 5, 6, 7]) assert srepr(p4, perm_cyclic=False) == 'Permutation([0, 1, 3, 2], size=8)' def test_deprecated_print_cyclic(): p = Permutation(0, 1, 2) try: Permutation.print_cyclic = True with warns_deprecated_sympy(): assert sstr(p) == '(0 1 2)' with warns_deprecated_sympy(): assert srepr(p) == 'Permutation(0, 1, 2)' with warns_deprecated_sympy(): assert pretty(p) == '(0 1 2)' with warns_deprecated_sympy(): assert latex(p) == r'\left( 0\; 1\; 2\right)' Permutation.print_cyclic = False with warns_deprecated_sympy(): assert sstr(p) == 'Permutation([1, 2, 0])' with warns_deprecated_sympy(): assert srepr(p) == 'Permutation([1, 2, 0])' with warns_deprecated_sympy(): assert pretty(p, use_unicode=False) == '/0 1 2\\\n\\1 2 0/' with warns_deprecated_sympy(): assert latex(p) == \ r'\begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}' finally: Permutation.print_cyclic = None def test_permutation_equality(): a = Permutation(0, 1, 2) b = Permutation(0, 1, 2) assert Eq(a, b) is S.true c = Permutation(0, 2, 1) assert Eq(a, c) is S.false d = Permutation(0, 1, 2, size=4) assert unchanged(Eq, a, d) e = Permutation(0, 2, 1, size=4) assert unchanged(Eq, a, e) i = Permutation() assert unchanged(Eq, i, 0) assert unchanged(Eq, 0, i) def test_issue_17661(): c1 = Cycle(1,2) c2 = Cycle(1,2) assert c1 == c2 assert repr(c1) == 'Cycle(1, 2)' assert c1 == c2 def test_permutation_apply(): x = Symbol('x') p = Permutation(0, 1, 2) assert p.apply(0) == 1 assert isinstance(p.apply(0), Integer) assert p.apply(x) == AppliedPermutation(p, x) assert AppliedPermutation(p, x).subs(x, 0) == 1 x = Symbol('x', integer=False) raises(NotImplementedError, lambda: p.apply(x)) x = Symbol('x', negative=True) raises(NotImplementedError, lambda: p.apply(x)) def test_AppliedPermutation(): x = Symbol('x') p = Permutation(0, 1, 2) raises(ValueError, lambda: AppliedPermutation((0, 1, 2), x)) assert AppliedPermutation(p, 1, evaluate=True) == 2 assert AppliedPermutation(p, 1, evaluate=False).__class__ == \ AppliedPermutation