from sympy.core.numbers import (Float, Rational, oo, pi) from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (acos, cos, sin) from sympy.sets import EmptySet from sympy.simplify.simplify import simplify from sympy.functions.elementary.trigonometric import tan from sympy.geometry import (Circle, GeometryError, Line, Point, Ray, Segment, Triangle, intersection, Point3D, Line3D, Ray3D, Segment3D, Point2D, Line2D) from sympy.geometry.line import Undecidable from sympy.geometry.polygon import _asa as asa from sympy.utilities.iterables import cartes from sympy.testing.pytest import raises, warns, warns_deprecated_sympy x = Symbol('x', real=True) y = Symbol('y', real=True) z = Symbol('z', real=True) k = Symbol('k', real=True) x1 = Symbol('x1', real=True) y1 = Symbol('y1', real=True) t = Symbol('t', real=True) a, b = symbols('a,b', real=True) m = symbols('m', real=True) def test_object_from_equation(): from sympy.abc import x, y, a, b assert Line(3*x + y + 18) == Line2D(Point2D(0, -18), Point2D(1, -21)) assert Line(3*x + 5 * y + 1) == Line2D( Point2D(0, Rational(-1, 5)), Point2D(1, Rational(-4, 5))) assert Line(3*a + b + 18, x="a", y="b") == Line2D( Point2D(0, -18), Point2D(1, -21)) assert Line(3*x + y) == Line2D(Point2D(0, 0), Point2D(1, -3)) assert Line(x + y) == Line2D(Point2D(0, 0), Point2D(1, -1)) assert Line(Eq(3*a + b, -18), x="a", y=b) == Line2D( Point2D(0, -18), Point2D(1, -21)) # issue 22361 assert Line(x - 1) == Line2D(Point2D(1, 0), Point2D(1, 1)) assert Line(2*x - 2, y=x) == Line2D(Point2D(0, 1), Point2D(1, 1)) assert Line(y) == Line2D(Point2D(0, 0), Point2D(1, 0)) assert Line(2*y, x=y) == Line2D(Point2D(0, 0), Point2D(0, 1)) assert Line(y, x=y) == Line2D(Point2D(0, 0), Point2D(0, 1)) raises(ValueError, lambda: Line(x / y)) raises(ValueError, lambda: Line(a / b, x='a', y='b')) raises(ValueError, lambda: Line(y / x)) raises(ValueError, lambda: Line(b / a, x='a', y='b')) raises(ValueError, lambda: Line((x + 1)**2 + y)) def feq(a, b): """Test if two floating point values are 'equal'.""" t_float = Float("1.0E-10") return -t_float < a - b < t_float def test_angle_between(): a = Point(1, 2, 3, 4) b = a.orthogonal_direction o = a.origin assert feq(Line.angle_between(Line(Point(0, 0), Point(1, 1)), Line(Point(0, 0), Point(5, 0))).evalf(), pi.evalf() / 4) assert Line(a, o).angle_between(Line(b, o)) == pi / 2 assert Line3D.angle_between(Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)), Line3D(Point3D(0, 0, 0), Point3D(5, 0, 0))) == acos(sqrt(3) / 3) def test_closing_angle(): a = Ray((0, 0), angle=0) b = Ray((1, 2), angle=pi/2) assert a.closing_angle(b) == -pi/2 assert b.closing_angle(a) == pi/2 assert a.closing_angle(a) == 0 def test_smallest_angle(): a = Line(Point(1, 1), Point(1, 2)) b = Line(Point(1, 1),Point(2, 3)) assert a.smallest_angle_between(b) == acos(2*sqrt(5)/5) def test_svg(): a = Line(Point(1, 1),Point(1, 2)) assert a._svg() == '' a = Segment(Point(1, 0),Point(1, 1)) assert a._svg() == '' a = Ray(Point(2, 3), Point(3, 5)) assert a._svg() == '' def test_arbitrary_point(): l1 = Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)) l2 = Line(Point(x1, x1), Point(y1, y1)) assert l2.arbitrary_point() in l2 assert Ray((1, 1), angle=pi / 4).arbitrary_point() == \ Point(t + 1, t + 1) assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t) assert l1.perpendicular_segment(l1.arbitrary_point()) == l1.arbitrary_point() assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]).arbitrary_point() == \ Point3D(t + 1, 2 * t + 1, 3 * t + 1) assert Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).midpoint == \ Point3D(S.Half, S.Half, S.Half) assert Segment3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1)).length == sqrt(3) * sqrt((x1 - y1) ** 2) assert Segment3D((1, 1, 1), (2, 3, 4)).arbitrary_point() == \ Point3D(t + 1, 2 * t + 1, 3 * t + 1) raises(ValueError, (lambda: Line((x, 1), (2, 3)).arbitrary_point(x))) def test_are_concurrent_2d(): l1 = Line(Point(0, 0), Point(1, 1)) l2 = Line(Point(x1, x1), Point(x1, 1 + x1)) assert Line.are_concurrent(l1) is False assert Line.are_concurrent(l1, l2) assert Line.are_concurrent(l1, l1, l1, l2) assert Line.are_concurrent(l1, l2, Line(Point(5, x1), Point(Rational(-3, 5), x1))) assert Line.are_concurrent(l1, Line(Point(0, 0), Point(-x1, x1)), l2) is False def test_are_concurrent_3d(): p1 = Point3D(0, 0, 0) l1 = Line(p1, Point3D(1, 1, 1)) parallel_1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)) parallel_2 = Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0)) assert Line3D.are_concurrent(l1) is False assert Line3D.are_concurrent(l1, Line(Point3D(x1, x1, x1), Point3D(y1, y1, y1))) is False assert Line3D.are_concurrent(l1, Line3D(p1, Point3D(x1, x1, x1)), Line(Point3D(x1, x1, x1), Point3D(x1, 1 + x1, 1))) is True assert Line3D.are_concurrent(parallel_1, parallel_2) is False def test_arguments(): """Functions accepting `Point` objects in `geometry` should also accept tuples, lists, and generators and automatically convert them to points.""" from sympy.utilities.iterables import subsets singles2d = ((1, 2), [1, 3], Point(1, 5)) doubles2d = subsets(singles2d, 2) l2d = Line(Point2D(1, 2), Point2D(2, 3)) singles3d = ((1, 2, 3), [1, 2, 4], Point(1, 2, 6)) doubles3d = subsets(singles3d, 2) l3d = Line(Point3D(1, 2, 3), Point3D(1, 1, 2)) singles4d = ((1, 2, 3, 4), [1, 2, 3, 5], Point(1, 2, 3, 7)) doubles4d = subsets(singles4d, 2) l4d = Line(Point(1, 2, 3, 4), Point(2, 2, 2, 2)) # test 2D test_single = ['contains', 'distance', 'equals', 'parallel_line', 'perpendicular_line', 'perpendicular_segment', 'projection', 'intersection'] for p in doubles2d: Line2D(*p) for func in test_single: for p in singles2d: getattr(l2d, func)(p) # test 3D for p in doubles3d: Line3D(*p) for func in test_single: for p in singles3d: getattr(l3d, func)(p) # test 4D for p in doubles4d: Line(*p) for func in test_single: for p in singles4d: getattr(l4d, func)(p) def test_basic_properties_2d(): p1 = Point(0, 0) p2 = Point(1, 1) p10 = Point(2000, 2000) p_r3 = Ray(p1, p2).random_point() p_r4 = Ray(p2, p1).random_point() l1 = Line(p1, p2) l3 = Line(Point(x1, x1), Point(x1, 1 + x1)) l4 = Line(p1, Point(1, 0)) r1 = Ray(p1, Point(0, 1)) r2 = Ray(Point(0, 1), p1) s1 = Segment(p1, p10) p_s1 = s1.random_point() assert Line((1, 1), slope=1) == Line((1, 1), (2, 2)) assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2)) assert Line((1, 1), slope=oo).bounds == (1, 1, 1, 2) assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2)) assert Line(p1, p2).scale(2, 1) == Line(p1, Point(2, 1)) assert Line(p1, p2) == Line(p1, p2) assert Line(p1, p2) != Line(p2, p1) assert l1 != Line(Point(x1, x1), Point(y1, y1)) assert l1 != l3 assert Line(p1, p10) != Line(p10, p1) assert Line(p1, p10) != p1 assert p1 in l1 # is p1 on the line l1? assert p1 not in l3 assert s1 in Line(p1, p10) assert Ray(Point(0, 0), Point(0, 1)) in Ray(Point(0, 0), Point(0, 2)) assert Ray(Point(0, 0), Point(0, 2)) in Ray(Point(0, 0), Point(0, 1)) assert Ray(Point(0, 0), Point(0, 2)).xdirection == S.Zero assert Ray(Point(0, 0), Point(1, 2)).xdirection == S.Infinity assert Ray(Point(0, 0), Point(-1, 2)).xdirection == S.NegativeInfinity assert Ray(Point(0, 0), Point(2, 0)).ydirection == S.Zero assert Ray(Point(0, 0), Point(2, 2)).ydirection == S.Infinity assert Ray(Point(0, 0), Point(2, -2)).ydirection == S.NegativeInfinity assert (r1 in s1) is False assert Segment(p1, p2) in s1 assert Ray(Point(x1, x1), Point(x1, 1 + x1)) != Ray(p1, Point(-1, 5)) assert Segment(p1, p2).midpoint == Point(S.Half, S.Half) assert Segment(p1, Point(-x1, x1)).length == sqrt(2 * (x1 ** 2)) assert l1.slope == 1 assert l3.slope is oo assert l4.slope == 0 assert Line(p1, Point(0, 1)).slope is oo assert Line(r1.source, r1.random_point()).slope == r1.slope assert Line(r2.source, r2.random_point()).slope == r2.slope assert Segment(Point(0, -1), Segment(p1, Point(0, 1)).random_point()).slope == Segment(p1, Point(0, 1)).slope assert l4.coefficients == (0, 1, 0) assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0) assert Line(p1, Point(0, 1)).coefficients == (1, 0, 0) # issue 7963 r = Ray((0, 0), angle=x) assert r.subs(x, 3 * pi / 4) == Ray((0, 0), (-1, 1)) assert r.subs(x, 5 * pi / 4) == Ray((0, 0), (-1, -1)) assert r.subs(x, -pi / 4) == Ray((0, 0), (1, -1)) assert r.subs(x, pi / 2) == Ray((0, 0), (0, 1)) assert r.subs(x, -pi / 2) == Ray((0, 0), (0, -1)) for ind in range(0, 5): assert l3.random_point() in l3 assert p_r3.x >= p1.x and p_r3.y >= p1.y assert p_r4.x <= p2.x and p_r4.y <= p2.y assert p1.x <= p_s1.x <= p10.x and p1.y <= p_s1.y <= p10.y assert hash(s1) != hash(Segment(p10, p1)) assert s1.plot_interval() == [t, 0, 1] assert Line(p1, p10).plot_interval() == [t, -5, 5] assert Ray((0, 0), angle=pi / 4).plot_interval() == [t, 0, 10] def test_basic_properties_3d(): p1 = Point3D(0, 0, 0) p2 = Point3D(1, 1, 1) p3 = Point3D(x1, x1, x1) p5 = Point3D(x1, 1 + x1, 1) l1 = Line3D(p1, p2) l3 = Line3D(p3, p5) r1 = Ray3D(p1, Point3D(-1, 5, 0)) r3 = Ray3D(p1, p2) s1 = Segment3D(p1, p2) assert Line3D((1, 1, 1), direction_ratio=[2, 3, 4]) == Line3D(Point3D(1, 1, 1), Point3D(3, 4, 5)) assert Line3D((1, 1, 1), direction_ratio=[1, 5, 7]) == Line3D(Point3D(1, 1, 1), Point3D(2, 6, 8)) assert Line3D((1, 1, 1), direction_ratio=[1, 2, 3]) == Line3D(Point3D(1, 1, 1), Point3D(2, 3, 4)) assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).direction_cosine == [1, 0, 0] assert Line3D(Line3D(p1, Point3D(0, 1, 0))) == Line3D(p1, Point3D(0, 1, 0)) assert Ray3D(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))) == Ray3D(p1, Point3D(1, 0, 0)) assert Line3D(p1, p2) != Line3D(p2, p1) assert l1 != l3 assert l1 != Line3D(p3, Point3D(y1, y1, y1)) assert r3 != r1 assert Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 1)) in Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)) assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)) in Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 1)) assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)).xdirection == S.Infinity assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)).ydirection == S.Infinity assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)).zdirection == S.Infinity assert Ray3D(Point3D(0, 0, 0), Point3D(-2, 2, 2)).xdirection == S.NegativeInfinity assert Ray3D(Point3D(0, 0, 0), Point3D(2, -2, 2)).ydirection == S.NegativeInfinity assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, -2)).zdirection == S.NegativeInfinity assert Ray3D(Point3D(0, 0, 0), Point3D(0, 2, 2)).xdirection == S.Zero assert Ray3D(Point3D(0, 0, 0), Point3D(2, 0, 2)).ydirection == S.Zero assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 0)).zdirection == S.Zero assert p1 in l1 assert p1 not in l3 assert l1.direction_ratio == [1, 1, 1] assert s1.midpoint == Point3D(S.Half, S.Half, S.Half) # Test zdirection assert Ray3D(p1, Point3D(0, 0, -1)).zdirection is S.NegativeInfinity def test_contains(): p1 = Point(0, 0) r = Ray(p1, Point(4, 4)) r1 = Ray3D(p1, Point3D(0, 0, -1)) r2 = Ray3D(p1, Point3D(0, 1, 0)) r3 = Ray3D(p1, Point3D(0, 0, 1)) l = Line(Point(0, 1), Point(3, 4)) # Segment contains assert Point(0, (a + b) / 2) in Segment((0, a), (0, b)) assert Point((a + b) / 2, 0) in Segment((a, 0), (b, 0)) assert Point3D(0, 1, 0) in Segment3D((0, 1, 0), (0, 1, 0)) assert Point3D(1, 0, 0) in Segment3D((1, 0, 0), (1, 0, 0)) assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains([]) is True assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains( Segment3D(Point3D(2, 2, 2), Point3D(3, 2, 2))) is False # Line contains assert l.contains(Point(0, 1)) is True assert l.contains((0, 1)) is True assert l.contains((0, 0)) is False # Ray contains assert r.contains(p1) is True assert r.contains((1, 1)) is True assert r.contains((1, 3)) is False assert r.contains(Segment((1, 1), (2, 2))) is True assert r.contains(Segment((1, 2), (2, 5))) is False assert r.contains(Ray((2, 2), (3, 3))) is True assert r.contains(Ray((2, 2), (3, 5))) is False assert r1.contains(Segment3D(p1, Point3D(0, 0, -10))) is True assert r1.contains(Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))) is False assert r2.contains(Point3D(0, 0, 0)) is True assert r3.contains(Point3D(0, 0, 0)) is True assert Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0)).contains([]) is False assert Line3D((0, 0, 0), (x, y, z)).contains((2 * x, 2 * y, 2 * z)) with warns(UserWarning, test_stacklevel=False): assert Line3D(p1, Point3D(0, 1, 0)).contains(Point(1.0, 1.0)) is False with warns(UserWarning, test_stacklevel=False): assert r3.contains(Point(1.0, 1.0)) is False def test_contains_nonreal_symbols(): u, v, w, z = symbols('u, v, w, z') l = Segment(Point(u, w), Point(v, z)) p = Point(u*Rational(2, 3) + v/3, w*Rational(2, 3) + z/3) assert l.contains(p) def test_distance_2d(): p1 = Point(0, 0) p2 = Point(1, 1) half = S.Half s1 = Segment(Point(0, 0), Point(1, 1)) s2 = Segment(Point(half, half), Point(1, 0)) r = Ray(p1, p2) assert s1.distance(Point(0, 0)) == 0 assert s1.distance((0, 0)) == 0 assert s2.distance(Point(0, 0)) == 2 ** half / 2 assert s2.distance(Point(Rational(3) / 2, Rational(3) / 2)) == 2 ** half assert Line(p1, p2).distance(Point(-1, 1)) == sqrt(2) assert Line(p1, p2).distance(Point(1, -1)) == sqrt(2) assert Line(p1, p2).distance(Point(2, 2)) == 0 assert Line(p1, p2).distance((-1, 1)) == sqrt(2) assert Line((0, 0), (0, 1)).distance(p1) == 0 assert Line((0, 0), (0, 1)).distance(p2) == 1 assert Line((0, 0), (1, 0)).distance(p1) == 0 assert Line((0, 0), (1, 0)).distance(p2) == 1 assert r.distance(Point(-1, -1)) == sqrt(2) assert r.distance(Point(1, 1)) == 0 assert r.distance(Point(-1, 1)) == sqrt(2) assert Ray((1, 1), (2, 2)).distance(Point(1.5, 3)) == 3 * sqrt(2) / 4 assert r.distance((1, 1)) == 0 def test_dimension_normalization(): with warns(UserWarning, test_stacklevel=False): assert Ray((1, 1), (2, 1, 2)) == Ray((1, 1, 0), (2, 1, 2)) def test_distance_3d(): p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1) p3 = Point3D(Rational(3) / 2, Rational(3) / 2, Rational(3) / 2) s1 = Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1)) s2 = Segment3D(Point3D(S.Half, S.Half, S.Half), Point3D(1, 0, 1)) r = Ray3D(p1, p2) assert s1.distance(p1) == 0 assert s2.distance(p1) == sqrt(3) / 2 assert s2.distance(p3) == 2 * sqrt(6) / 3 assert s1.distance((0, 0, 0)) == 0 assert s2.distance((0, 0, 0)) == sqrt(3) / 2 assert s1.distance(p1) == 0 assert s2.distance(p1) == sqrt(3) / 2 assert s2.distance(p3) == 2 * sqrt(6) / 3 assert s1.distance((0, 0, 0)) == 0 assert s2.distance((0, 0, 0)) == sqrt(3) / 2 # Line to point assert Line3D(p1, p2).distance(Point3D(-1, 1, 1)) == 2 * sqrt(6) / 3 assert Line3D(p1, p2).distance(Point3D(1, -1, 1)) == 2 * sqrt(6) / 3 assert Line3D(p1, p2).distance(Point3D(2, 2, 2)) == 0 assert Line3D(p1, p2).distance((2, 2, 2)) == 0 assert Line3D(p1, p2).distance((1, -1, 1)) == 2 * sqrt(6) / 3 assert Line3D((0, 0, 0), (0, 1, 0)).distance(p1) == 0 assert Line3D((0, 0, 0), (0, 1, 0)).distance(p2) == sqrt(2) assert Line3D((0, 0, 0), (1, 0, 0)).distance(p1) == 0 assert Line3D((0, 0, 0), (1, 0, 0)).distance(p2) == sqrt(2) # Ray to point assert r.distance(Point3D(-1, -1, -1)) == sqrt(3) assert r.distance(Point3D(1, 1, 1)) == 0 assert r.distance((-1, -1, -1)) == sqrt(3) assert r.distance((1, 1, 1)) == 0 assert Ray3D((0, 0, 0), (1, 1, 2)).distance((-1, -1, 2)) == 4 * sqrt(3) / 3 assert Ray3D((1, 1, 1), (2, 2, 2)).distance(Point3D(1.5, -3, -1)) == Rational(9) / 2 assert Ray3D((1, 1, 1), (2, 2, 2)).distance(Point3D(1.5, 3, 1)) == sqrt(78) / 6 def test_equals(): p1 = Point(0, 0) p2 = Point(1, 1) l1 = Line(p1, p2) l2 = Line((0, 5), slope=m) l3 = Line(Point(x1, x1), Point(x1, 1 + x1)) assert l1.perpendicular_line(p1.args).equals(Line(Point(0, 0), Point(1, -1))) assert l1.perpendicular_line(p1).equals(Line(Point(0, 0), Point(1, -1))) assert Line(Point(x1, x1), Point(y1, y1)).parallel_line(Point(-x1, x1)). \ equals(Line(Point(-x1, x1), Point(-y1, 2 * x1 - y1))) assert l3.parallel_line(p1.args).equals(Line(Point(0, 0), Point(0, -1))) assert l3.parallel_line(p1).equals(Line(Point(0, 0), Point(0, -1))) assert (l2.distance(Point(2, 3)) - 2 * abs(m + 1) / sqrt(m ** 2 + 1)).equals(0) assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(Point3D(-5, 0, 0), Point3D(-1, 0, 0))) is True assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(p1, Point3D(0, 1, 0))) is False assert Ray3D(p1, Point3D(0, 0, -1)).equals(Point(1.0, 1.0)) is False assert Ray3D(p1, Point3D(0, 0, -1)).equals(Ray3D(p1, Point3D(0, 0, -1))) is True assert Line3D((0, 0), (t, t)).perpendicular_line(Point(0, 1, 0)).equals( Line3D(Point3D(0, 1, 0), Point3D(S.Half, S.Half, 0))) assert Line3D((0, 0), (t, t)).perpendicular_segment(Point(0, 1, 0)).equals(Segment3D((0, 1), (S.Half, S.Half))) assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False def test_equation(): p1 = Point(0, 0) p2 = Point(1, 1) l1 = Line(p1, p2) l3 = Line(Point(x1, x1), Point(x1, 1 + x1)) assert simplify(l1.equation()) in (x - y, y - x) assert simplify(l3.equation()) in (x - x1, x1 - x) assert simplify(l1.equation()) in (x - y, y - x) assert simplify(l3.equation()) in (x - x1, x1 - x) assert Line(p1, Point(1, 0)).equation(x=x, y=y) == y assert Line(p1, Point(0, 1)).equation() == x assert Line(Point(2, 0), Point(2, 1)).equation() == x - 2 assert Line(p2, Point(2, 1)).equation() == y - 1 assert Line3D(Point(x1, x1, x1), Point(y1, y1, y1) ).equation() == (-x + y, -x + z) assert Line3D(Point(1, 2, 3), Point(2, 3, 4) ).equation() == (-x + y - 1, -x + z - 2) assert Line3D(Point(1, 2, 3), Point(1, 3, 4) ).equation() == (x - 1, -y + z - 1) assert Line3D(Point(1, 2, 3), Point(2, 2, 4) ).equation() == (y - 2, -x + z - 2) assert Line3D(Point(1, 2, 3), Point(2, 3, 3) ).equation() == (-x + y - 1, z - 3) assert Line3D(Point(1, 2, 3), Point(1, 2, 4) ).equation() == (x - 1, y - 2) assert Line3D(Point(1, 2, 3), Point(1, 3, 3) ).equation() == (x - 1, z - 3) assert Line3D(Point(1, 2, 3), Point(2, 2, 3) ).equation() == (y - 2, z - 3) with warns_deprecated_sympy(): assert Line3D(Point(1, 2, 3), Point(2, 2, 3) ).equation(k='k') == (y - 2, z - 3) def test_intersection_2d(): p1 = Point(0, 0) p2 = Point(1, 1) p3 = Point(x1, x1) p4 = Point(y1, y1) l1 = Line(p1, p2) l3 = Line(Point(0, 0), Point(3, 4)) r1 = Ray(Point(1, 1), Point(2, 2)) r2 = Ray(Point(0, 0), Point(3, 4)) r4 = Ray(p1, p2) r6 = Ray(Point(0, 1), Point(1, 2)) r7 = Ray(Point(0.5, 0.5), Point(1, 1)) s1 = Segment(p1, p2) s2 = Segment(Point(0.25, 0.25), Point(0.5, 0.5)) s3 = Segment(Point(0, 0), Point(3, 4)) assert intersection(l1, p1) == [p1] assert intersection(l1, Point(x1, 1 + x1)) == [] assert intersection(l1, Line(p3, p4)) in [[l1], [Line(p3, p4)]] assert intersection(l1, l1.parallel_line(Point(x1, 1 + x1))) == [] assert intersection(l3, l3) == [l3] assert intersection(l3, r2) == [r2] assert intersection(l3, s3) == [s3] assert intersection(s3, l3) == [s3] assert intersection(Segment(Point(-10, 10), Point(10, 10)), Segment(Point(-5, -5), Point(-5, 5))) == [] assert intersection(r2, l3) == [r2] assert intersection(r1, Ray(Point(2, 2), Point(0, 0))) == [Segment(Point(1, 1), Point(2, 2))] assert intersection(r1, Ray(Point(1, 1), Point(-1, -1))) == [Point(1, 1)] assert intersection(r1, Segment(Point(0, 0), Point(2, 2))) == [Segment(Point(1, 1), Point(2, 2))] assert r4.intersection(s2) == [s2] assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == [] assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))] assert r4.intersection(Ray(p2, p1)) == [s1] assert Ray(p2, p1).intersection(r6) == [] assert r4.intersection(r7) == r7.intersection(r4) == [r7] assert Ray3D((0, 0), (3, 0)).intersection(Ray3D((1, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))] assert Ray3D((1, 0), (3, 0)).intersection(Ray3D((0, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))] assert Ray(Point(0, 0), Point(0, 4)).intersection(Ray(Point(0, 1), Point(0, -1))) == \ [Segment(Point(0, 0), Point(0, 1))] assert Segment3D((0, 0), (3, 0)).intersection( Segment3D((1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))] assert Segment3D((1, 0), (2, 0)).intersection( Segment3D((0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))] assert Segment3D((0, 0), (3, 0)).intersection( Segment3D((3, 0), (4, 0))) == [Point3D((3, 0))] assert Segment3D((0, 0), (3, 0)).intersection( Segment3D((2, 0), (5, 0))) == [Segment3D((2, 0), (3, 0))] assert Segment3D((0, 0), (3, 0)).intersection( Segment3D((-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))] assert Segment3D((0, 0), (3, 0)).intersection( Segment3D((-2, 0), (0, 0))) == [Point3D(0, 0)] assert s1.intersection(Segment(Point(1, 1), Point(2, 2))) == [Point(1, 1)] assert s1.intersection(Segment(Point(0.5, 0.5), Point(1.5, 1.5))) == [Segment(Point(0.5, 0.5), p2)] assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == [] assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1] assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))] assert s1.intersection(Line(Point(1, 0), Point(2, 1))) == [] assert s1.intersection(s2) == [s2] assert s2.intersection(s1) == [s2] assert asa(120, 8, 52) == \ Triangle( Point(0, 0), Point(8, 0), Point(-4 * cos(19 * pi / 90) / sin(2 * pi / 45), 4 * sqrt(3) * cos(19 * pi / 90) / sin(2 * pi / 45))) assert Line((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)] assert Line((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)] assert Ray((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)] assert Ray((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)] assert Ray((0, 0), (10, 10)).contains(Segment((1, 1), (2, 2))) is True assert Segment((1, 1), (2, 2)) in Line((0, 0), (10, 10)) assert s1.intersection(Ray((1, 1), (4, 4))) == [Point(1, 1)] # This test is disabled because it hangs after rref changes which simplify # intermediate results and return a different representation from when the # test was written. # # 16628 - this should be fast # p0 = Point2D(Rational(249, 5), Rational(497999, 10000)) # p1 = Point2D((-58977084786*sqrt(405639795226) + 2030690077184193 + # 20112207807*sqrt(630547164901) + 99600*sqrt(255775022850776494562626)) # /(2000*sqrt(255775022850776494562626) + 1991998000*sqrt(405639795226) # + 1991998000*sqrt(630547164901) + 1622561172902000), # (-498000*sqrt(255775022850776494562626) - 995999*sqrt(630547164901) + # 90004251917891999 + # 496005510002*sqrt(405639795226))/(10000*sqrt(255775022850776494562626) # + 9959990000*sqrt(405639795226) + 9959990000*sqrt(630547164901) + # 8112805864510000)) # p2 = Point2D(Rational(497, 10), Rational(-497, 10)) # p3 = Point2D(Rational(-497, 10), Rational(-497, 10)) # l = Line(p0, p1) # s = Segment(p2, p3) # n = (-52673223862*sqrt(405639795226) - 15764156209307469 - # 9803028531*sqrt(630547164901) + # 33200*sqrt(255775022850776494562626)) # d = sqrt(405639795226) + 315274080450 + 498000*sqrt( # 630547164901) + sqrt(255775022850776494562626) # assert intersection(l, s) == [ # Point2D(n/d*Rational(3, 2000), Rational(-497, 10))] def test_line_intersection(): # see also test_issue_11238 in test_matrices.py x0 = tan(pi*Rational(13, 45)) x1 = sqrt(3) x2 = x0**2 x, y = [8*x0/(x0 + x1), (24*x0 - 8*x1*x2)/(x2 - 3)] assert Line(Point(0, 0), Point(1, -sqrt(3))).contains(Point(x, y)) is True def test_intersection_3d(): p1 = Point3D(0, 0, 0) p2 = Point3D(1, 1, 1) l1 = Line3D(p1, p2) l2 = Line3D(Point3D(0, 0, 0), Point3D(3, 4, 0)) r1 = Ray3D(Point3D(1, 1, 1), Point3D(2, 2, 2)) r2 = Ray3D(Point3D(0, 0, 0), Point3D(3, 4, 0)) s1 = Segment3D(Point3D(0, 0, 0), Point3D(3, 4, 0)) assert intersection(l1, p1) == [p1] assert intersection(l1, Point3D(x1, 1 + x1, 1)) == [] assert intersection(l1, l1.parallel_line(p1)) == [Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1))] assert intersection(l2, r2) == [r2] assert intersection(l2, s1) == [s1] assert intersection(r2, l2) == [r2] assert intersection(r1, Ray3D(Point3D(1, 1, 1), Point3D(-1, -1, -1))) == [Point3D(1, 1, 1)] assert intersection(r1, Segment3D(Point3D(0, 0, 0), Point3D(2, 2, 2))) == [ Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))] assert intersection(Ray3D(Point3D(1, 0, 0), Point3D(-1, 0, 0)), Ray3D(Point3D(0, 1, 0), Point3D(0, -1, 0))) \ == [Point3D(0, 0, 0)] assert intersection(r1, Ray3D(Point3D(2, 2, 2), Point3D(0, 0, 0))) == \ [Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))] assert intersection(s1, r2) == [s1] assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).intersection(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) == \ [Point3D(2, 2, 1)] assert Line3D((0, 1, 2), (0, 2, 3)).intersection(Line3D((0, 1, 2), (0, 1, 1))) == [Point3D(0, 1, 2)] assert Line3D((0, 0), (t, t)).intersection(Line3D((0, 1), (t, t))) == \ [Point3D(t, t)] assert Ray3D(Point3D(0, 0, 0), Point3D(0, 4, 0)).intersection(Ray3D(Point3D(0, 1, 1), Point3D(0, -1, 1))) == [] def test_is_parallel(): p1 = Point3D(0, 0, 0) p2 = Point3D(1, 1, 1) p3 = Point3D(x1, x1, x1) l2 = Line(Point(x1, x1), Point(y1, y1)) l2_1 = Line(Point(x1, x1), Point(x1, 1 + x1)) assert Line.is_parallel(Line(Point(0, 0), Point(1, 1)), l2) assert Line.is_parallel(l2, Line(Point(x1, x1), Point(x1, 1 + x1))) is False assert Line.is_parallel(l2, l2.parallel_line(Point(-x1, x1))) assert Line.is_parallel(l2_1, l2_1.parallel_line(Point(0, 0))) assert Line3D(p1, p2).is_parallel(Line3D(p1, p2)) # same as in 2D assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False assert Line3D(p1, p2).parallel_line(p3) == Line3D(Point3D(x1, x1, x1), Point3D(x1 + 1, x1 + 1, x1 + 1)) assert Line3D(p1, p2).parallel_line(p3.args) == \ Line3D(Point3D(x1, x1, x1), Point3D(x1 + 1, x1 + 1, x1 + 1)) assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False def test_is_perpendicular(): p1 = Point(0, 0) p2 = Point(1, 1) l1 = Line(p1, p2) l2 = Line(Point(x1, x1), Point(y1, y1)) l1_1 = Line(p1, Point(-x1, x1)) # 2D assert Line.is_perpendicular(l1, l1_1) assert Line.is_perpendicular(l1, l2) is False p = l1.random_point() assert l1.perpendicular_segment(p) == p # 3D assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)), Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))) is True assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)), Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))) is False assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)), Line3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1))) is False def test_is_similar(): p1 = Point(2000, 2000) p2 = p1.scale(2, 2) r1 = Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0)) r2 = Ray(Point(0, 0), Point(0, 1)) s1 = Segment(Point(0, 0), p1) assert s1.is_similar(Segment(p1, p2)) assert s1.is_similar(r2) is False assert r1.is_similar(Line3D(Point3D(1, 1, 1), Point3D(1, 0, 0))) is True assert r1.is_similar(Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))) is False def test_length(): s2 = Segment3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1)) assert Line(Point(0, 0), Point(1, 1)).length is oo assert s2.length == sqrt(3) * sqrt((x1 - y1) ** 2) assert Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).length is oo def test_projection(): p1 = Point(0, 0) p2 = Point3D(0, 0, 0) p3 = Point(-x1, x1) l1 = Line(p1, Point(1, 1)) l2 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)) l3 = Line3D(p2, Point3D(1, 1, 1)) r1 = Ray(Point(1, 1), Point(2, 2)) s1 = Segment(Point2D(0, 0), Point2D(0, 1)) s2 = Segment(Point2D(1, 0), Point2D(2, 1/2)) assert Line(Point(x1, x1), Point(y1, y1)).projection(Point(y1, y1)) == Point(y1, y1) assert Line(Point(x1, x1), Point(x1, 1 + x1)).projection(Point(1, 1)) == Point(x1, 1) assert Segment(Point(-2, 2), Point(0, 4)).projection(r1) == Segment(Point(-1, 3), Point(0, 4)) assert Segment(Point(0, 4), Point(-2, 2)).projection(r1) == Segment(Point(0, 4), Point(-1, 3)) assert s2.projection(s1) == EmptySet assert l1.projection(p3) == p1 assert l1.projection(Ray(p1, Point(-1, 5))) == Ray(Point(0, 0), Point(2, 2)) assert l1.projection(Ray(p1, Point(-1, 1))) == p1 assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1) assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2)) assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2)) assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1) assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2)) assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2)) assert l3.projection(Ray3D(p2, Point3D(-1, 5, 0))) == Ray3D(Point3D(0, 0, 0), Point3D(Rational(4, 3), Rational(4, 3), Rational(4, 3))) assert l3.projection(Ray3D(p2, Point3D(-1, 1, 1))) == Ray3D(Point3D(0, 0, 0), Point3D(Rational(1, 3), Rational(1, 3), Rational(1, 3))) assert l2.projection(Point3D(5, 5, 0)) == Point3D(5, 0) assert l2.projection(Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))).equals(l2) def test_perpendicular_bisector(): s1 = Segment(Point(0, 0), Point(1, 1)) aline = Line(Point(S.Half, S.Half), Point(Rational(3, 2), Rational(-1, 2))) on_line = Segment(Point(S.Half, S.Half), Point(Rational(3, 2), Rational(-1, 2))).midpoint assert s1.perpendicular_bisector().equals(aline) assert s1.perpendicular_bisector(on_line).equals(Segment(s1.midpoint, on_line)) assert s1.perpendicular_bisector(on_line + (1, 0)).equals(aline) def test_raises(): d, e = symbols('a,b', real=True) s = Segment((d, 0), (e, 0)) raises(TypeError, lambda: Line((1, 1), 1)) raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0))) raises(Undecidable, lambda: Point(2 * d, 0) in s) raises(ValueError, lambda: Ray3D(Point(1.0, 1.0))) raises(ValueError, lambda: Line3D(Point3D(0, 0, 0), Point3D(0, 0, 0))) raises(TypeError, lambda: Line3D((1, 1), 1)) raises(ValueError, lambda: Line3D(Point3D(0, 0, 0))) raises(TypeError, lambda: Ray((1, 1), 1)) raises(GeometryError, lambda: Line(Point(0, 0), Point(1, 0)) .projection(Circle(Point(0, 0), 1))) def test_ray_generation(): assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2)) assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0)) assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1)) assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1)) assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1)) assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1)) assert Ray((1, 1), angle=4.05 * pi) == Ray(Point(1, 1), Point(2, -sqrt(5) * sqrt(2 * sqrt(5) + 10) / 4 - sqrt( 2 * sqrt(5) + 10) / 4 + 2 + sqrt(5))) assert Ray((1, 1), angle=4.02 * pi) == Ray(Point(1, 1), Point(2, 1 + tan(4.02 * pi))) assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + tan(5))) assert Ray3D((1, 1, 1), direction_ratio=[4, 4, 4]) == Ray3D(Point3D(1, 1, 1), Point3D(5, 5, 5)) assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]) == Ray3D(Point3D(1, 1, 1), Point3D(2, 3, 4)) assert Ray3D((1, 1, 1), direction_ratio=[1, 1, 1]) == Ray3D(Point3D(1, 1, 1), Point3D(2, 2, 2)) def test_symbolic_intersect(): # Issue 7814. circle = Circle(Point(x, 0), y) line = Line(Point(k, z), slope=0) assert line.intersection(circle) == [Point(x + sqrt((y - z) * (y + z)), z), Point(x - sqrt((y - z) * (y + z)), z)] def test_issue_2941(): def _check(): for f, g in cartes(*[(Line, Ray, Segment)] * 2): l1 = f(a, b) l2 = g(c, d) assert l1.intersection(l2) == l2.intersection(l1) # intersect at end point c, d = (-2, -2), (-2, 0) a, b = (0, 0), (1, 1) _check() # midline intersection c, d = (-2, -3), (-2, 0) _check() def test_parameter_value(): t = Symbol('t') p1, p2 = Point(0, 1), Point(5, 6) l = Line(p1, p2) assert l.parameter_value((5, 6), t) == {t: 1} raises(ValueError, lambda: l.parameter_value((0, 0), t)) def test_bisectors(): r1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)) r2 = Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0)) bisections = r1.bisectors(r2) assert bisections == [Line3D(Point3D(0, 0, 0), Point3D(1, 1, 0)), Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))] ans = [Line3D(Point3D(0, 0, 0), Point3D(1, 0, 1)), Line3D(Point3D(0, 0, 0), Point3D(-1, 0, 1))] l1 = (0, 0, 0), (0, 0, 1) l2 = (0, 0), (1, 0) for a, b in cartes((Line, Segment, Ray), repeat=2): assert a(*l1).bisectors(b(*l2)) == ans def test_issue_8615(): a = Line3D(Point3D(6, 5, 0), Point3D(6, -6, 0)) b = Line3D(Point3D(6, -1, 19/10), Point3D(6, -1, 0)) assert a.intersection(b) == [Point3D(6, -1, 0)]