from sympy.core.function import (Derivative, Function) from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.geometry import Point, Point2D, Line, Polygon, Segment, convex_hull,\ intersection, centroid, Point3D, Line3D from sympy.geometry.util import idiff, closest_points, farthest_points, _ordered_points, are_coplanar from sympy.solvers.solvers import solve from sympy.testing.pytest import raises def test_idiff(): x = Symbol('x', real=True) y = Symbol('y', real=True) t = Symbol('t', real=True) f = Function('f') g = Function('g') # the use of idiff in ellipse also provides coverage circ = x**2 + y**2 - 4 ans = 3*x*(-x**2 - y**2)/y**5 assert ans == idiff(circ, y, x, 3).simplify() assert ans == idiff(circ, [y], x, 3).simplify() assert idiff(circ, y, x, 3).simplify() == ans explicit = 12*x/sqrt(-x**2 + 4)**5 assert ans.subs(y, solve(circ, y)[0]).equals(explicit) assert True in [sol.diff(x, 3).equals(explicit) for sol in solve(circ, y)] assert idiff(x + t + y, [y, t], x) == -Derivative(t, x) - 1 assert idiff(f(x) * exp(f(x)) - x * exp(x), f(x), x) == (x + 1) * exp(x - f(x))/(f(x) + 1) assert idiff(f(x) - y * exp(x), [f(x), y], x) == (y + Derivative(y, x)) * exp(x) assert idiff(f(x) - y * exp(x), [y, f(x)], x) == -y + exp(-x) * Derivative(f(x), x) assert idiff(f(x) - g(x), [f(x), g(x)], x) == Derivative(g(x), x) def test_intersection(): assert intersection(Point(0, 0)) == [] raises(TypeError, lambda: intersection(Point(0, 0), 3)) assert intersection( Segment((0, 0), (2, 0)), Segment((-1, 0), (1, 0)), Line((0, 0), (0, 1)), pairwise=True) == [ Point(0, 0), Segment((0, 0), (1, 0))] assert intersection( Line((0, 0), (0, 1)), Segment((0, 0), (2, 0)), Segment((-1, 0), (1, 0)), pairwise=True) == [ Point(0, 0), Segment((0, 0), (1, 0))] assert intersection( Line((0, 0), (0, 1)), Segment((0, 0), (2, 0)), Segment((-1, 0), (1, 0)), Line((0, 0), slope=1), pairwise=True) == [ Point(0, 0), Segment((0, 0), (1, 0))] def test_convex_hull(): raises(TypeError, lambda: convex_hull(Point(0, 0), 3)) points = [(1, -1), (1, -2), (3, -1), (-5, -2), (15, -4)] assert convex_hull(*points, **dict(polygon=False)) == ( [Point2D(-5, -2), Point2D(1, -1), Point2D(3, -1), Point2D(15, -4)], [Point2D(-5, -2), Point2D(15, -4)]) def test_centroid(): p = Polygon((0, 0), (10, 0), (10, 10)) q = p.translate(0, 20) assert centroid(p, q) == Point(20, 40)/3 p = Segment((0, 0), (2, 0)) q = Segment((0, 0), (2, 2)) assert centroid(p, q) == Point(1, -sqrt(2) + 2) assert centroid(Point(0, 0), Point(2, 0)) == Point(2, 0)/2 assert centroid(Point(0, 0), Point(0, 0), Point(2, 0)) == Point(2, 0)/3 def test_farthest_points_closest_points(): from sympy.core.random import randint from sympy.utilities.iterables import subsets for how in (min, max): if how == min: func = closest_points else: func = farthest_points raises(ValueError, lambda: func(Point2D(0, 0), Point2D(0, 0))) # 3rd pt dx is close and pt is closer to 1st pt p1 = [Point2D(0, 0), Point2D(3, 0), Point2D(1, 1)] # 3rd pt dx is close and pt is closer to 2nd pt p2 = [Point2D(0, 0), Point2D(3, 0), Point2D(2, 1)] # 3rd pt dx is close and but pt is not closer p3 = [Point2D(0, 0), Point2D(3, 0), Point2D(1, 10)] # 3rd pt dx is not closer and it's closer to 2nd pt p4 = [Point2D(0, 0), Point2D(3, 0), Point2D(4, 0)] # 3rd pt dx is not closer and it's closer to 1st pt p5 = [Point2D(0, 0), Point2D(3, 0), Point2D(-1, 0)] # duplicate point doesn't affect outcome dup = [Point2D(0, 0), Point2D(3, 0), Point2D(3, 0), Point2D(-1, 0)] # symbolic x = Symbol('x', positive=True) s = [Point2D(a) for a in ((x, 1), (x + 3, 2), (x + 2, 2))] for points in (p1, p2, p3, p4, p5, dup, s): d = how(i.distance(j) for i, j in subsets(set(points), 2)) ans = a, b = list(func(*points))[0] assert a.distance(b) == d assert ans == _ordered_points(ans) # if the following ever fails, the above tests were not sufficient # and the logical error in the routine should be fixed points = set() while len(points) != 7: points.add(Point2D(randint(1, 100), randint(1, 100))) points = list(points) d = how(i.distance(j) for i, j in subsets(points, 2)) ans = a, b = list(func(*points))[0] assert a.distance(b) == d assert ans == _ordered_points(ans) # equidistant points a, b, c = ( Point2D(0, 0), Point2D(1, 0), Point2D(S.Half, sqrt(3)/2)) ans = {_ordered_points((i, j)) for i, j in subsets((a, b, c), 2)} assert closest_points(b, c, a) == ans assert farthest_points(b, c, a) == ans # unique to farthest points = [(1, 1), (1, 2), (3, 1), (-5, 2), (15, 4)] assert farthest_points(*points) == { (Point2D(-5, 2), Point2D(15, 4))} points = [(1, -1), (1, -2), (3, -1), (-5, -2), (15, -4)] assert farthest_points(*points) == { (Point2D(-5, -2), Point2D(15, -4))} assert farthest_points((1, 1), (0, 0)) == { (Point2D(0, 0), Point2D(1, 1))} raises(ValueError, lambda: farthest_points((1, 1))) def test_are_coplanar(): a = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1)) b = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1)) c = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9)) d = Line(Point2D(0, 3), Point2D(1, 5)) assert are_coplanar(a, b, c) == False assert are_coplanar(a, d) == False