from sympy.core import symbols, S from sympy.matrices.expressions import MatrixSymbol, Inverse, MatPow, ZeroMatrix, OneMatrix from sympy.matrices.common import NonSquareMatrixError, NonInvertibleMatrixError from sympy.matrices import eye, Identity from sympy.testing.pytest import raises from sympy.assumptions.ask import Q from sympy.assumptions.refine import refine n, m, l = symbols('n m l', integer=True) A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', m, l) C = MatrixSymbol('C', n, n) D = MatrixSymbol('D', n, n) E = MatrixSymbol('E', m, n) def test_inverse(): assert Inverse(C).args == (C, S.NegativeOne) assert Inverse(C).shape == (n, n) assert Inverse(A*E).shape == (n, n) assert Inverse(E*A).shape == (m, m) assert Inverse(C).inverse() == C assert Inverse(Inverse(C)).doit() == C assert isinstance(Inverse(Inverse(C)), Inverse) assert Inverse(*Inverse(E*A).args) == Inverse(E*A) assert C.inverse().inverse() == C assert C.inverse()*C == Identity(C.rows) assert Identity(n).inverse() == Identity(n) assert (3*Identity(n)).inverse() == Identity(n)/3 # Simplifies Muls if possible (i.e. submatrices are square) assert (C*D).inverse() == D.I*C.I # But still works when not possible assert isinstance((A*E).inverse(), Inverse) assert Inverse(C*D).doit(inv_expand=False) == Inverse(C*D) assert Inverse(eye(3)).doit() == eye(3) assert Inverse(eye(3)).doit(deep=False) == eye(3) assert OneMatrix(1, 1).I == Identity(1) assert isinstance(OneMatrix(n, n).I, Inverse) def test_inverse_non_invertible(): raises(NonSquareMatrixError, lambda: Inverse(A)) raises(NonSquareMatrixError, lambda: Inverse(A*B)) raises(NonSquareMatrixError, lambda: ZeroMatrix(n, m).I) raises(NonInvertibleMatrixError, lambda: ZeroMatrix(n, n).I) raises(NonSquareMatrixError, lambda: OneMatrix(n, m).I) raises(NonInvertibleMatrixError, lambda: OneMatrix(2, 2).I) def test_refine(): assert refine(C.I, Q.orthogonal(C)) == C.T def test_inverse_matpow_canonicalization(): A = MatrixSymbol('A', 3, 3) assert Inverse(MatPow(A, 3)).doit() == MatPow(Inverse(A), 3).doit()