from sympy.core.numbers import oo from sympy.core.relational import Eq from sympy.core.symbol import symbols from sympy.polys.domains import FiniteField, QQ, RationalField, FF from sympy.solvers.solvers import solve from sympy.utilities.iterables import is_sequence from sympy.utilities.misc import as_int from .factor_ import divisors from .residue_ntheory import polynomial_congruence class EllipticCurve: """ Create the following Elliptic Curve over domain. `y^{2} + a_{1} x y + a_{3} y = x^{3} + a_{2} x^{2} + a_{4} x + a_{6}` The default domain is ``QQ``. If no coefficient ``a1``, ``a2``, ``a3``, it create curve as following form. `y^{2} = x^{3} + a_{4} x + a_{6}` Examples ======== References ========== .. [1] J. Silverman "A Friendly Introduction to Number Theory" Third Edition .. [2] http://mathworld.wolfram.com/EllipticDiscriminant.html .. [3] G. Hardy, E. Wright "An Introduction to the Theory of Numbers" Sixth Edition """ def __init__(self, a4, a6, a1=0, a2=0, a3=0, modulus = 0): if modulus == 0: domain = QQ else: domain = FF(modulus) a1, a2, a3, a4, a6 = map(domain.convert, (a1, a2, a3, a4, a6)) self._domain = domain self.modulus = modulus # Calculate discriminant b2 = a1**2 + 4 * a2 b4 = 2 * a4 + a1 * a3 b6 = a3**2 + 4 * a6 b8 = a1**2 * a6 + 4 * a2 * a6 - a1 * a3 * a4 + a2 * a3**2 - a4**2 self._b2, self._b4, self._b6, self._b8 = b2, b4, b6, b8 self._discrim = -b2**2 * b8 - 8 * b4**3 - 27 * b6**2 + 9 * b2 * b4 * b6 self._a1 = a1 self._a2 = a2 self._a3 = a3 self._a4 = a4 self._a6 = a6 x, y, z = symbols('x y z') self.x, self.y, self.z = x, y, z self._eq = Eq(y**2*z + a1*x*y*z + a3*y*z**2, x**3 + a2*x**2*z + a4*x*z**2 + a6*z**3) if isinstance(self._domain, FiniteField): self._rank = 0 elif isinstance(self._domain, RationalField): self._rank = None def __call__(self, x, y, z=1): return EllipticCurvePoint(x, y, z, self) def __contains__(self, point): if is_sequence(point): if len(point) == 2: z1 = 1 else: z1 = point[2] x1, y1 = point[:2] elif isinstance(point, EllipticCurvePoint): x1, y1, z1 = point.x, point.y, point.z else: raise ValueError('Invalid point.') if self.characteristic == 0 and z1 == 0: return True return self._eq.subs({self.x: x1, self.y: y1, self.z: z1}) def __repr__(self): return 'E({}): {}'.format(self._domain, self._eq) def minimal(self): """ Return minimal Weierstrass equation. Examples ======== >>> from sympy.ntheory.elliptic_curve import EllipticCurve >>> e1 = EllipticCurve(-10, -20, 0, -1, 1) >>> e1.minimal() E(QQ): Eq(y**2*z, x**3 - 13392*x*z**2 - 1080432*z**3) """ char = self.characteristic if char == 2: return self if char == 3: return EllipticCurve(self._b4/2, self._b6/4, a2=self._b2/4, modulus=self.modulus) c4 = self._b2**2 - 24*self._b4 c6 = -self._b2**3 + 36*self._b2*self._b4 - 216*self._b6 return EllipticCurve(-27*c4, -54*c6, modulus=self.modulus) def points(self): """ Return points of curve over Finite Field. Examples ======== >>> from sympy.ntheory.elliptic_curve import EllipticCurve >>> e2 = EllipticCurve(1, 1, 1, 1, 1, modulus=5) >>> e2.points() {(0, 2), (1, 4), (2, 0), (2, 2), (3, 0), (3, 1), (4, 0)} """ char = self.characteristic all_pt = set() if char >= 1: for i in range(char): congruence_eq = ((self._eq.lhs - self._eq.rhs).subs({self.x: i, self.z: 1})) sol = polynomial_congruence(congruence_eq, char) for num in sol: all_pt.add((i, num)) return all_pt else: raise ValueError("Infinitely many points") def points_x(self, x): "Returns points on with curve where xcoordinate = x" pt = [] if self._domain == QQ: for y in solve(self._eq.subs(self.x, x)): pt.append((x, y)) congruence_eq = ((self._eq.lhs - self._eq.rhs).subs({self.x: x, self.z: 1})) for y in polynomial_congruence(congruence_eq, self.characteristic): pt.append((x, y)) return pt def torsion_points(self): """ Return torsion points of curve over Rational number. Return point objects those are finite order. According to Nagell-Lutz theorem, torsion point p(x, y) x and y are integers, either y = 0 or y**2 is divisor of discriminent. According to Mazur's theorem, there are at most 15 points in torsion collection. Examples ======== >>> from sympy.ntheory.elliptic_curve import EllipticCurve >>> e2 = EllipticCurve(-43, 166) >>> sorted(e2.torsion_points()) [(-5, -16), (-5, 16), O, (3, -8), (3, 8), (11, -32), (11, 32)] """ if self.characteristic > 0: raise ValueError("No torsion point for Finite Field.") l = [EllipticCurvePoint.point_at_infinity(self)] for xx in solve(self._eq.subs({self.y: 0, self.z: 1})): if xx.is_rational: l.append(self(xx, 0)) for i in divisors(self.discriminant, generator=True): j = int(i**.5) if j**2 == i: for xx in solve(self._eq.subs({self.y: j, self.z: 1})): if not xx.is_rational: continue p = self(xx, j) if p.order() != oo: l.extend([p, -p]) return l @property def characteristic(self): """ Return domain characteristic. Examples ======== >>> from sympy.ntheory.elliptic_curve import EllipticCurve >>> e2 = EllipticCurve(-43, 166) >>> e2.characteristic 0 """ return self._domain.characteristic() @property def discriminant(self): """ Return curve discriminant. Examples ======== >>> from sympy.ntheory.elliptic_curve import EllipticCurve >>> e2 = EllipticCurve(0, 17) >>> e2.discriminant -124848 """ return int(self._discrim) @property def is_singular(self): """ Return True if curve discriminant is equal to zero. """ return self.discriminant == 0 @property def j_invariant(self): """ Return curve j-invariant. Examples ======== >>> from sympy.ntheory.elliptic_curve import EllipticCurve >>> e1 = EllipticCurve(-2, 0, 0, 1, 1) >>> e1.j_invariant 1404928/389 """ c4 = self._b2**2 - 24*self._b4 return self._domain.to_sympy(c4**3 / self._discrim) @property def order(self): """ Number of points in Finite field. Examples ======== >>> from sympy.ntheory.elliptic_curve import EllipticCurve >>> e2 = EllipticCurve(1, 0, modulus=19) >>> e2.order 19 """ if self.characteristic == 0: raise NotImplementedError("Still not implemented") return len(list(self.points())) @property def rank(self): """ Number of independent points of infinite order. For Finite field, it must be 0. """ if self._rank is not None: return self._rank raise NotImplementedError("Still not implemented") class EllipticCurvePoint: """ Point of Elliptic Curve Examples ======== >>> from sympy.ntheory.elliptic_curve import EllipticCurve >>> e1 = EllipticCurve(-17, 16) >>> p1 = e1(0, -4, 1) >>> p2 = e1(1, 0) >>> p1 + p2 (15, -56) >>> e3 = EllipticCurve(-1, 9) >>> e3(1, -3) * 3 (664/169, 17811/2197) >>> (e3(1, -3) * 3).order() oo >>> e2 = EllipticCurve(-2, 0, 0, 1, 1) >>> p = e2(-1,1) >>> q = e2(0, -1) >>> p+q (4, 8) >>> p-q (1, 0) >>> 3*p-5*q (328/361, -2800/6859) """ @staticmethod def point_at_infinity(curve): return EllipticCurvePoint(0, 1, 0, curve) def __init__(self, x, y, z, curve): dom = curve._domain.convert self.x = dom(x) self.y = dom(y) self.z = dom(z) self._curve = curve self._domain = self._curve._domain if not self._curve.__contains__(self): raise ValueError("The curve does not contain this point") def __add__(self, p): if self.z == 0: return p if p.z == 0: return self x1, y1 = self.x/self.z, self.y/self.z x2, y2 = p.x/p.z, p.y/p.z a1 = self._curve._a1 a2 = self._curve._a2 a3 = self._curve._a3 a4 = self._curve._a4 a6 = self._curve._a6 if x1 != x2: slope = (y1 - y2) / (x1 - x2) yint = (y1 * x2 - y2 * x1) / (x2 - x1) else: if (y1 + y2) == 0: return self.point_at_infinity(self._curve) slope = (3 * x1**2 + 2*a2*x1 + a4 - a1*y1) / (a1 * x1 + a3 + 2 * y1) yint = (-x1**3 + a4*x1 + 2*a6 - a3*y1) / (a1*x1 + a3 + 2*y1) x3 = slope**2 + a1*slope - a2 - x1 - x2 y3 = -(slope + a1) * x3 - yint - a3 return self._curve(x3, y3, 1) def __lt__(self, other): return (self.x, self.y, self.z) < (other.x, other.y, other.z) def __mul__(self, n): n = as_int(n) r = self.point_at_infinity(self._curve) if n == 0: return r if n < 0: return -self * -n p = self while n: if n & 1: r = r + p n >>= 1 p = p + p return r def __rmul__(self, n): return self * n def __neg__(self): return EllipticCurvePoint(self.x, -self.y - self._curve._a1*self.x - self._curve._a3, self.z, self._curve) def __repr__(self): if self.z == 0: return 'O' dom = self._curve._domain try: return '({}, {})'.format(dom.to_sympy(self.x), dom.to_sympy(self.y)) except TypeError: pass return '({}, {})'.format(self.x, self.y) def __sub__(self, other): return self.__add__(-other) def order(self): """ Return point order n where nP = 0. """ if self.z == 0: return 1 if self.y == 0: # P = -P return 2 p = self * 2 if p.y == -self.y: # 2P = -P return 3 i = 2 if self._domain != QQ: while int(p.x) == p.x and int(p.y) == p.y: p = self + p i += 1 if p.z == 0: return i return oo while p.x.numerator == p.x and p.y.numerator == p.y: p = self + p i += 1 if i > 12: return oo if p.z == 0: return i return oo