from collections import defaultdict from sympy.core.containers import Tuple from sympy.core.singleton import S from sympy.core.symbol import (Dummy, Symbol) from sympy.ntheory import n_order, is_primitive_root, is_quad_residue, \ legendre_symbol, jacobi_symbol, totient, primerange, sqrt_mod, \ primitive_root, quadratic_residues, is_nthpow_residue, nthroot_mod, \ sqrt_mod_iter, mobius, discrete_log, quadratic_congruence, \ polynomial_congruence from sympy.ntheory.residue_ntheory import _primitive_root_prime_iter, \ _discrete_log_trial_mul, _discrete_log_shanks_steps, \ _discrete_log_pollard_rho, _discrete_log_pohlig_hellman from sympy.polys.domains import ZZ from sympy.testing.pytest import raises def test_residue(): assert n_order(2, 13) == 12 assert [n_order(a, 7) for a in range(1, 7)] == \ [1, 3, 6, 3, 6, 2] assert n_order(5, 17) == 16 assert n_order(17, 11) == n_order(6, 11) assert n_order(101, 119) == 6 assert n_order(11, (10**50 + 151)**2) == 10000000000000000000000000000000000000000000000030100000000000000000000000000000000000000000000022650 raises(ValueError, lambda: n_order(6, 9)) assert is_primitive_root(2, 7) is False assert is_primitive_root(3, 8) is False assert is_primitive_root(11, 14) is False assert is_primitive_root(12, 17) == is_primitive_root(29, 17) raises(ValueError, lambda: is_primitive_root(3, 6)) for p in primerange(3, 100): it = _primitive_root_prime_iter(p) assert len(list(it)) == totient(totient(p)) assert primitive_root(97) == 5 assert primitive_root(97**2) == 5 assert primitive_root(40487) == 5 # note that primitive_root(40487) + 40487 = 40492 is a primitive root # of 40487**2, but it is not the smallest assert primitive_root(40487**2) == 10 assert primitive_root(82) == 7 p = 10**50 + 151 assert primitive_root(p) == 11 assert primitive_root(2*p) == 11 assert primitive_root(p**2) == 11 raises(ValueError, lambda: primitive_root(-3)) assert is_quad_residue(3, 7) is False assert is_quad_residue(10, 13) is True assert is_quad_residue(12364, 139) == is_quad_residue(12364 % 139, 139) assert is_quad_residue(207, 251) is True assert is_quad_residue(0, 1) is True assert is_quad_residue(1, 1) is True assert is_quad_residue(0, 2) == is_quad_residue(1, 2) is True assert is_quad_residue(1, 4) is True assert is_quad_residue(2, 27) is False assert is_quad_residue(13122380800, 13604889600) is True assert [j for j in range(14) if is_quad_residue(j, 14)] == \ [0, 1, 2, 4, 7, 8, 9, 11] raises(ValueError, lambda: is_quad_residue(1.1, 2)) raises(ValueError, lambda: is_quad_residue(2, 0)) assert quadratic_residues(S.One) == [0] assert quadratic_residues(1) == [0] assert quadratic_residues(12) == [0, 1, 4, 9] assert quadratic_residues(12) == [0, 1, 4, 9] assert quadratic_residues(13) == [0, 1, 3, 4, 9, 10, 12] assert [len(quadratic_residues(i)) for i in range(1, 20)] == \ [1, 2, 2, 2, 3, 4, 4, 3, 4, 6, 6, 4, 7, 8, 6, 4, 9, 8, 10] assert list(sqrt_mod_iter(6, 2)) == [0] assert sqrt_mod(3, 13) == 4 assert sqrt_mod(3, -13) == 4 assert sqrt_mod(6, 23) == 11 assert sqrt_mod(345, 690) == 345 assert sqrt_mod(67, 101) == None assert sqrt_mod(1020, 104729) == None for p in range(3, 100): d = defaultdict(list) for i in range(p): d[pow(i, 2, p)].append(i) for i in range(1, p): it = sqrt_mod_iter(i, p) v = sqrt_mod(i, p, True) if v: v = sorted(v) assert d[i] == v else: assert not d[i] assert sqrt_mod(9, 27, True) == [3, 6, 12, 15, 21, 24] assert sqrt_mod(9, 81, True) == [3, 24, 30, 51, 57, 78] assert sqrt_mod(9, 3**5, True) == [3, 78, 84, 159, 165, 240] assert sqrt_mod(81, 3**4, True) == [0, 9, 18, 27, 36, 45, 54, 63, 72] assert sqrt_mod(81, 3**5, True) == [9, 18, 36, 45, 63, 72, 90, 99, 117,\ 126, 144, 153, 171, 180, 198, 207, 225, 234] assert sqrt_mod(81, 3**6, True) == [9, 72, 90, 153, 171, 234, 252, 315,\ 333, 396, 414, 477, 495, 558, 576, 639, 657, 720] assert sqrt_mod(81, 3**7, True) == [9, 234, 252, 477, 495, 720, 738, 963,\ 981, 1206, 1224, 1449, 1467, 1692, 1710, 1935, 1953, 2178] for a, p in [(26214400, 32768000000), (26214400, 16384000000), (262144, 1048576), (87169610025, 163443018796875), (22315420166400, 167365651248000000)]: assert pow(sqrt_mod(a, p), 2, p) == a n = 70 a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+2) it = sqrt_mod_iter(a, p) for i in range(10): assert pow(next(it), 2, p) == a a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+3) it = sqrt_mod_iter(a, p) for i in range(2): assert pow(next(it), 2, p) == a n = 100 a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+1) it = sqrt_mod_iter(a, p) for i in range(2): assert pow(next(it), 2, p) == a assert type(next(sqrt_mod_iter(9, 27))) is int assert type(next(sqrt_mod_iter(9, 27, ZZ))) is type(ZZ(1)) assert type(next(sqrt_mod_iter(1, 7, ZZ))) is type(ZZ(1)) assert is_nthpow_residue(2, 1, 5) #issue 10816 assert is_nthpow_residue(1, 0, 1) is False assert is_nthpow_residue(1, 0, 2) is True assert is_nthpow_residue(3, 0, 2) is True assert is_nthpow_residue(0, 1, 8) is True assert is_nthpow_residue(2, 3, 2) is True assert is_nthpow_residue(2, 3, 9) is False assert is_nthpow_residue(3, 5, 30) is True assert is_nthpow_residue(21, 11, 20) is True assert is_nthpow_residue(7, 10, 20) is False assert is_nthpow_residue(5, 10, 20) is True assert is_nthpow_residue(3, 10, 48) is False assert is_nthpow_residue(1, 10, 40) is True assert is_nthpow_residue(3, 10, 24) is False assert is_nthpow_residue(1, 10, 24) is True assert is_nthpow_residue(3, 10, 24) is False assert is_nthpow_residue(2, 10, 48) is False assert is_nthpow_residue(81, 3, 972) is False assert is_nthpow_residue(243, 5, 5103) is True assert is_nthpow_residue(243, 3, 1240029) is False assert is_nthpow_residue(36010, 8, 87382) is True assert is_nthpow_residue(28552, 6, 2218) is True assert is_nthpow_residue(92712, 9, 50026) is True x = {pow(i, 56, 1024) for i in range(1024)} assert {a for a in range(1024) if is_nthpow_residue(a, 56, 1024)} == x x = { pow(i, 256, 2048) for i in range(2048)} assert {a for a in range(2048) if is_nthpow_residue(a, 256, 2048)} == x x = { pow(i, 11, 324000) for i in range(1000)} assert [ is_nthpow_residue(a, 11, 324000) for a in x] x = { pow(i, 17, 22217575536) for i in range(1000)} assert [ is_nthpow_residue(a, 17, 22217575536) for a in x] assert is_nthpow_residue(676, 3, 5364) assert is_nthpow_residue(9, 12, 36) assert is_nthpow_residue(32, 10, 41) assert is_nthpow_residue(4, 2, 64) assert is_nthpow_residue(31, 4, 41) assert not is_nthpow_residue(2, 2, 5) assert is_nthpow_residue(8547, 12, 10007) assert is_nthpow_residue(Dummy(even=True) + 3, 3, 2) == True assert nthroot_mod(Dummy(odd=True), 3, 2) == 1 assert nthroot_mod(29, 31, 74) == [45] assert nthroot_mod(1801, 11, 2663) == 44 for a, q, p in [(51922, 2, 203017), (43, 3, 109), (1801, 11, 2663), (26118163, 1303, 33333347), (1499, 7, 2663), (595, 6, 2663), (1714, 12, 2663), (28477, 9, 33343)]: r = nthroot_mod(a, q, p) assert pow(r, q, p) == a assert nthroot_mod(11, 3, 109) is None assert nthroot_mod(16, 5, 36, True) == [4, 22] assert nthroot_mod(9, 16, 36, True) == [3, 9, 15, 21, 27, 33] assert nthroot_mod(4, 3, 3249000) == [] assert nthroot_mod(36010, 8, 87382, True) == [40208, 47174] assert nthroot_mod(0, 12, 37, True) == [0] assert nthroot_mod(0, 7, 100, True) == [0, 10, 20, 30, 40, 50, 60, 70, 80, 90] assert nthroot_mod(4, 4, 27, True) == [5, 22] assert nthroot_mod(4, 4, 121, True) == [19, 102] assert nthroot_mod(2, 3, 7, True) == [] for p in range(5, 100): qv = range(3, p, 4) for q in qv: d = defaultdict(list) for i in range(p): d[pow(i, q, p)].append(i) for a in range(1, p - 1): res = nthroot_mod(a, q, p, True) if d[a]: assert d[a] == res else: assert res == [] assert legendre_symbol(5, 11) == 1 assert legendre_symbol(25, 41) == 1 assert legendre_symbol(67, 101) == -1 assert legendre_symbol(0, 13) == 0 assert legendre_symbol(9, 3) == 0 raises(ValueError, lambda: legendre_symbol(2, 4)) assert jacobi_symbol(25, 41) == 1 assert jacobi_symbol(-23, 83) == -1 assert jacobi_symbol(3, 9) == 0 assert jacobi_symbol(42, 97) == -1 assert jacobi_symbol(3, 5) == -1 assert jacobi_symbol(7, 9) == 1 assert jacobi_symbol(0, 3) == 0 assert jacobi_symbol(0, 1) == 1 assert jacobi_symbol(2, 1) == 1 assert jacobi_symbol(1, 3) == 1 raises(ValueError, lambda: jacobi_symbol(3, 8)) assert mobius(13*7) == 1 assert mobius(1) == 1 assert mobius(13*7*5) == -1 assert mobius(13**2) == 0 raises(ValueError, lambda: mobius(-3)) p = Symbol('p', integer=True, positive=True, prime=True) x = Symbol('x', positive=True) i = Symbol('i', integer=True) assert mobius(p) == -1 raises(TypeError, lambda: mobius(x)) raises(ValueError, lambda: mobius(i)) assert _discrete_log_trial_mul(587, 2**7, 2) == 7 assert _discrete_log_trial_mul(941, 7**18, 7) == 18 assert _discrete_log_trial_mul(389, 3**81, 3) == 81 assert _discrete_log_trial_mul(191, 19**123, 19) == 123 assert _discrete_log_shanks_steps(442879, 7**2, 7) == 2 assert _discrete_log_shanks_steps(874323, 5**19, 5) == 19 assert _discrete_log_shanks_steps(6876342, 7**71, 7) == 71 assert _discrete_log_shanks_steps(2456747, 3**321, 3) == 321 assert _discrete_log_pollard_rho(6013199, 2**6, 2, rseed=0) == 6 assert _discrete_log_pollard_rho(6138719, 2**19, 2, rseed=0) == 19 assert _discrete_log_pollard_rho(36721943, 2**40, 2, rseed=0) == 40 assert _discrete_log_pollard_rho(24567899, 3**333, 3, rseed=0) == 333 raises(ValueError, lambda: _discrete_log_pollard_rho(11, 7, 31, rseed=0)) raises(ValueError, lambda: _discrete_log_pollard_rho(227, 3**7, 5, rseed=0)) assert _discrete_log_pohlig_hellman(98376431, 11**9, 11) == 9 assert _discrete_log_pohlig_hellman(78723213, 11**31, 11) == 31 assert _discrete_log_pohlig_hellman(32942478, 11**98, 11) == 98 assert _discrete_log_pohlig_hellman(14789363, 11**444, 11) == 444 assert discrete_log(587, 2**9, 2) == 9 assert discrete_log(2456747, 3**51, 3) == 51 assert discrete_log(32942478, 11**127, 11) == 127 assert discrete_log(432751500361, 7**324, 7) == 324 args = 5779, 3528, 6215 assert discrete_log(*args) == 687 assert discrete_log(*Tuple(*args)) == 687 assert quadratic_congruence(400, 85, 125, 1600) == [295, 615, 935, 1255, 1575] assert quadratic_congruence(3, 6, 5, 25) == [3, 20] assert quadratic_congruence(120, 80, 175, 500) == [] assert quadratic_congruence(15, 14, 7, 2) == [1] assert quadratic_congruence(8, 15, 7, 29) == [10, 28] assert quadratic_congruence(160, 200, 300, 461) == [144, 431] assert quadratic_congruence(100000, 123456, 7415263, 48112959837082048697) == [30417843635344493501, 36001135160550533083] assert quadratic_congruence(65, 121, 72, 277) == [249, 252] assert quadratic_congruence(5, 10, 14, 2) == [0] assert quadratic_congruence(10, 17, 19, 2) == [1] assert quadratic_congruence(10, 14, 20, 2) == [0, 1] assert polynomial_congruence(6*x**5 + 10*x**4 + 5*x**3 + x**2 + x + 1, 972000) == [220999, 242999, 463999, 485999, 706999, 728999, 949999, 971999] assert polynomial_congruence(x**3 - 10*x**2 + 12*x - 82, 33075) == [30287] assert polynomial_congruence(x**2 + x + 47, 2401) == [785, 1615] assert polynomial_congruence(10*x**2 + 14*x + 20, 2) == [0, 1] assert polynomial_congruence(x**3 + 3, 16) == [5] assert polynomial_congruence(65*x**2 + 121*x + 72, 277) == [249, 252] assert polynomial_congruence(x**4 - 4, 27) == [5, 22] assert polynomial_congruence(35*x**3 - 6*x**2 - 567*x + 2308, 148225) == [86957, 111157, 122531, 146731] assert polynomial_congruence(x**16 - 9, 36) == [3, 9, 15, 21, 27, 33] assert polynomial_congruence(x**6 - 2*x**5 - 35, 6125) == [3257] raises(ValueError, lambda: polynomial_congruence(x**x, 6125)) raises(ValueError, lambda: polynomial_congruence(x**i, 6125)) raises(ValueError, lambda: polynomial_congruence(0.1*x**2 + 6, 100))