from sympy.core.function import expand from sympy.core.numbers import (Rational, pi) from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.sets.sets import Interval from sympy.simplify.simplify import simplify from sympy.physics.continuum_mechanics.beam import Beam from sympy.functions import SingularityFunction, Piecewise, meijerg, Abs, log from sympy.testing.pytest import raises from sympy.physics.units import meter, newton, kilo, giga, milli from sympy.physics.continuum_mechanics.beam import Beam3D from sympy.geometry import Circle, Polygon, Point2D, Triangle from sympy.core.sympify import sympify x = Symbol('x') y = Symbol('y') R1, R2 = symbols('R1, R2') def test_Beam(): E = Symbol('E') E_1 = Symbol('E_1') I = Symbol('I') I_1 = Symbol('I_1') A = Symbol('A') b = Beam(1, E, I) assert b.length == 1 assert b.elastic_modulus == E assert b.second_moment == I assert b.variable == x # Test the length setter b.length = 4 assert b.length == 4 # Test the E setter b.elastic_modulus = E_1 assert b.elastic_modulus == E_1 # Test the I setter b.second_moment = I_1 assert b.second_moment is I_1 # Test the variable setter b.variable = y assert b.variable is y # Test for all boundary conditions. b.bc_deflection = [(0, 2)] b.bc_slope = [(0, 1)] assert b.boundary_conditions == {'deflection': [(0, 2)], 'slope': [(0, 1)]} # Test for slope boundary condition method b.bc_slope.extend([(4, 3), (5, 0)]) s_bcs = b.bc_slope assert s_bcs == [(0, 1), (4, 3), (5, 0)] # Test for deflection boundary condition method b.bc_deflection.extend([(4, 3), (5, 0)]) d_bcs = b.bc_deflection assert d_bcs == [(0, 2), (4, 3), (5, 0)] # Test for updated boundary conditions bcs_new = b.boundary_conditions assert bcs_new == { 'deflection': [(0, 2), (4, 3), (5, 0)], 'slope': [(0, 1), (4, 3), (5, 0)]} b1 = Beam(30, E, I) b1.apply_load(-8, 0, -1) b1.apply_load(R1, 10, -1) b1.apply_load(R2, 30, -1) b1.apply_load(120, 30, -2) b1.bc_deflection = [(10, 0), (30, 0)] b1.solve_for_reaction_loads(R1, R2) # Test for finding reaction forces p = b1.reaction_loads q = {R1: 6, R2: 2} assert p == q # Test for load distribution function. p = b1.load q = -8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1) \ + 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1) assert p == q # Test for shear force distribution function p = b1.shear_force() q = 8*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 10, 0) \ - 120*SingularityFunction(x, 30, -1) - 2*SingularityFunction(x, 30, 0) assert p == q # Test for shear stress distribution function p = b1.shear_stress() q = (8*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 10, 0) \ - 120*SingularityFunction(x, 30, -1) \ - 2*SingularityFunction(x, 30, 0))/A assert p==q # Test for bending moment distribution function p = b1.bending_moment() q = 8*SingularityFunction(x, 0, 1) - 6*SingularityFunction(x, 10, 1) \ - 120*SingularityFunction(x, 30, 0) - 2*SingularityFunction(x, 30, 1) assert p == q # Test for slope distribution function p = b1.slope() q = -4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) \ + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) \ + Rational(4000, 3) assert p == q/(E*I) # Test for deflection distribution function p = b1.deflection() q = x*Rational(4000, 3) - 4*SingularityFunction(x, 0, 3)/3 \ + SingularityFunction(x, 10, 3) + 60*SingularityFunction(x, 30, 2) \ + SingularityFunction(x, 30, 3)/3 - 12000 assert p == q/(E*I) # Test using symbols l = Symbol('l') w0 = Symbol('w0') w2 = Symbol('w2') a1 = Symbol('a1') c = Symbol('c') c1 = Symbol('c1') d = Symbol('d') e = Symbol('e') f = Symbol('f') b2 = Beam(l, E, I) b2.apply_load(w0, a1, 1) b2.apply_load(w2, c1, -1) b2.bc_deflection = [(c, d)] b2.bc_slope = [(e, f)] # Test for load distribution function. p = b2.load q = w0*SingularityFunction(x, a1, 1) + w2*SingularityFunction(x, c1, -1) assert p == q # Test for shear force distribution function p = b2.shear_force() q = -w0*SingularityFunction(x, a1, 2)/2 \ - w2*SingularityFunction(x, c1, 0) assert p == q # Test for shear stress distribution function p = b2.shear_stress() q = (-w0*SingularityFunction(x, a1, 2)/2 \ - w2*SingularityFunction(x, c1, 0))/A assert p == q # Test for bending moment distribution function p = b2.bending_moment() q = -w0*SingularityFunction(x, a1, 3)/6 - w2*SingularityFunction(x, c1, 1) assert p == q # Test for slope distribution function p = b2.slope() q = (w0*SingularityFunction(x, a1, 4)/24 + w2*SingularityFunction(x, c1, 2)/2)/(E*I) + (E*I*f - w0*SingularityFunction(e, a1, 4)/24 - w2*SingularityFunction(e, c1, 2)/2)/(E*I) assert expand(p) == expand(q) # Test for deflection distribution function p = b2.deflection() q = x*(E*I*f - w0*SingularityFunction(e, a1, 4)/24 \ - w2*SingularityFunction(e, c1, 2)/2)/(E*I) \ + (w0*SingularityFunction(x, a1, 5)/120 \ + w2*SingularityFunction(x, c1, 3)/6)/(E*I) \ + (E*I*(-c*f + d) + c*w0*SingularityFunction(e, a1, 4)/24 \ + c*w2*SingularityFunction(e, c1, 2)/2 \ - w0*SingularityFunction(c, a1, 5)/120 \ - w2*SingularityFunction(c, c1, 3)/6)/(E*I) assert simplify(p - q) == 0 b3 = Beam(9, E, I, 2) b3.apply_load(value=-2, start=2, order=2, end=3) b3.bc_slope.append((0, 2)) C3 = symbols('C3') C4 = symbols('C4') p = b3.load q = -2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) \ + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2) assert p == q p = b3.shear_force() q = 2*SingularityFunction(x, 2, 3)/3 - 2*SingularityFunction(x, 3, 1) \ - 2*SingularityFunction(x, 3, 2) - 2*SingularityFunction(x, 3, 3)/3 assert p == q p = b3.shear_stress() q = SingularityFunction(x, 2, 3)/3 - 1*SingularityFunction(x, 3, 1) \ - 1*SingularityFunction(x, 3, 2) - 1*SingularityFunction(x, 3, 3)/3 assert p == q p = b3.slope() q = 2 - (SingularityFunction(x, 2, 5)/30 - SingularityFunction(x, 3, 3)/3 \ - SingularityFunction(x, 3, 4)/6 - SingularityFunction(x, 3, 5)/30)/(E*I) assert p == q p = b3.deflection() q = 2*x - (SingularityFunction(x, 2, 6)/180 \ - SingularityFunction(x, 3, 4)/12 - SingularityFunction(x, 3, 5)/30 \ - SingularityFunction(x, 3, 6)/180)/(E*I) assert p == q + C4 b4 = Beam(4, E, I, 3) b4.apply_load(-3, 0, 0, end=3) p = b4.load q = -3*SingularityFunction(x, 0, 0) + 3*SingularityFunction(x, 3, 0) assert p == q p = b4.shear_force() q = 3*SingularityFunction(x, 0, 1) \ - 3*SingularityFunction(x, 3, 1) assert p == q p = b4.shear_stress() q = SingularityFunction(x, 0, 1) - SingularityFunction(x, 3, 1) assert p == q p = b4.slope() q = -3*SingularityFunction(x, 0, 3)/6 + 3*SingularityFunction(x, 3, 3)/6 assert p == q/(E*I) + C3 p = b4.deflection() q = -3*SingularityFunction(x, 0, 4)/24 + 3*SingularityFunction(x, 3, 4)/24 assert p == q/(E*I) + C3*x + C4 # can't use end with point loads raises(ValueError, lambda: b4.apply_load(-3, 0, -1, end=3)) with raises(TypeError): b4.variable = 1 def test_insufficient_bconditions(): # Test cases when required number of boundary conditions # are not provided to solve the integration constants. L = symbols('L', positive=True) E, I, P, a3, a4 = symbols('E I P a3 a4') b = Beam(L, E, I, base_char='a') b.apply_load(R2, L, -1) b.apply_load(R1, 0, -1) b.apply_load(-P, L/2, -1) b.solve_for_reaction_loads(R1, R2) p = b.slope() q = P*SingularityFunction(x, 0, 2)/4 - P*SingularityFunction(x, L/2, 2)/2 + P*SingularityFunction(x, L, 2)/4 assert p == q/(E*I) + a3 p = b.deflection() q = P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12 assert p == q/(E*I) + a3*x + a4 b.bc_deflection = [(0, 0)] p = b.deflection() q = a3*x + P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12 assert p == q/(E*I) b.bc_deflection = [(0, 0), (L, 0)] p = b.deflection() q = -L**2*P*x/16 + P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12 assert p == q/(E*I) def test_statically_indeterminate(): E = Symbol('E') I = Symbol('I') M1, M2 = symbols('M1, M2') F = Symbol('F') l = Symbol('l', positive=True) b5 = Beam(l, E, I) b5.bc_deflection = [(0, 0),(l, 0)] b5.bc_slope = [(0, 0),(l, 0)] b5.apply_load(R1, 0, -1) b5.apply_load(M1, 0, -2) b5.apply_load(R2, l, -1) b5.apply_load(M2, l, -2) b5.apply_load(-F, l/2, -1) b5.solve_for_reaction_loads(R1, R2, M1, M2) p = b5.reaction_loads q = {R1: F/2, R2: F/2, M1: -F*l/8, M2: F*l/8} assert p == q def test_beam_units(): E = Symbol('E') I = Symbol('I') R1, R2 = symbols('R1, R2') kN = kilo*newton gN = giga*newton b = Beam(8*meter, 200*gN/meter**2, 400*1000000*(milli*meter)**4) b.apply_load(5*kN, 2*meter, -1) b.apply_load(R1, 0*meter, -1) b.apply_load(R2, 8*meter, -1) b.apply_load(10*kN/meter, 4*meter, 0, end=8*meter) b.bc_deflection = [(0*meter, 0*meter), (8*meter, 0*meter)] b.solve_for_reaction_loads(R1, R2) assert b.reaction_loads == {R1: -13750*newton, R2: -31250*newton} b = Beam(3*meter, E*newton/meter**2, I*meter**4) b.apply_load(8*kN, 1*meter, -1) b.apply_load(R1, 0*meter, -1) b.apply_load(R2, 3*meter, -1) b.apply_load(12*kN*meter, 2*meter, -2) b.bc_deflection = [(0*meter, 0*meter), (3*meter, 0*meter)] b.solve_for_reaction_loads(R1, R2) assert b.reaction_loads == {R1: newton*Rational(-28000, 3), R2: newton*Rational(4000, 3)} assert b.deflection().subs(x, 1*meter) == 62000*meter/(9*E*I) def test_variable_moment(): E = Symbol('E') I = Symbol('I') b = Beam(4, E, 2*(4 - x)) b.apply_load(20, 4, -1) R, M = symbols('R, M') b.apply_load(R, 0, -1) b.apply_load(M, 0, -2) b.bc_deflection = [(0, 0)] b.bc_slope = [(0, 0)] b.solve_for_reaction_loads(R, M) assert b.slope().expand() == ((10*x*SingularityFunction(x, 0, 0) - 10*(x - 4)*SingularityFunction(x, 4, 0))/E).expand() assert b.deflection().expand() == ((5*x**2*SingularityFunction(x, 0, 0) - 10*Piecewise((0, Abs(x)/4 < 1), (16*meijerg(((3, 1), ()), ((), (2, 0)), x/4), True)) + 40*SingularityFunction(x, 4, 1))/E).expand() b = Beam(4, E - x, I) b.apply_load(20, 4, -1) R, M = symbols('R, M') b.apply_load(R, 0, -1) b.apply_load(M, 0, -2) b.bc_deflection = [(0, 0)] b.bc_slope = [(0, 0)] b.solve_for_reaction_loads(R, M) assert b.slope().expand() == ((-80*(-log(-E) + log(-E + x))*SingularityFunction(x, 0, 0) + 80*(-log(-E + 4) + log(-E + x))*SingularityFunction(x, 4, 0) + 20*(-E*log(-E) + E*log(-E + x) + x)*SingularityFunction(x, 0, 0) - 20*(-E*log(-E + 4) + E*log(-E + x) + x - 4)*SingularityFunction(x, 4, 0))/I).expand() def test_composite_beam(): E = Symbol('E') I = Symbol('I') b1 = Beam(2, E, 1.5*I) b2 = Beam(2, E, I) b = b1.join(b2, "fixed") b.apply_load(-20, 0, -1) b.apply_load(80, 0, -2) b.apply_load(20, 4, -1) b.bc_slope = [(0, 0)] b.bc_deflection = [(0, 0)] assert b.length == 4 assert b.second_moment == Piecewise((1.5*I, x <= 2), (I, x <= 4)) assert b.slope().subs(x, 4) == 120.0/(E*I) assert b.slope().subs(x, 2) == 80.0/(E*I) assert int(b.deflection().subs(x, 4).args[0]) == -302 # Coefficient of 1/(E*I) l = symbols('l', positive=True) R1, M1, R2, R3, P = symbols('R1 M1 R2 R3 P') b1 = Beam(2*l, E, I) b2 = Beam(2*l, E, I) b = b1.join(b2,"hinge") b.apply_load(M1, 0, -2) b.apply_load(R1, 0, -1) b.apply_load(R2, l, -1) b.apply_load(R3, 4*l, -1) b.apply_load(P, 3*l, -1) b.bc_slope = [(0, 0)] b.bc_deflection = [(0, 0), (l, 0), (4*l, 0)] b.solve_for_reaction_loads(M1, R1, R2, R3) assert b.reaction_loads == {R3: -P/2, R2: P*Rational(-5, 4), M1: -P*l/4, R1: P*Rational(3, 4)} assert b.slope().subs(x, 3*l) == -7*P*l**2/(48*E*I) assert b.deflection().subs(x, 2*l) == 7*P*l**3/(24*E*I) assert b.deflection().subs(x, 3*l) == 5*P*l**3/(16*E*I) # When beams having same second moment are joined. b1 = Beam(2, 500, 10) b2 = Beam(2, 500, 10) b = b1.join(b2, "fixed") b.apply_load(M1, 0, -2) b.apply_load(R1, 0, -1) b.apply_load(R2, 1, -1) b.apply_load(R3, 4, -1) b.apply_load(10, 3, -1) b.bc_slope = [(0, 0)] b.bc_deflection = [(0, 0), (1, 0), (4, 0)] b.solve_for_reaction_loads(M1, R1, R2, R3) assert b.slope() == -2*SingularityFunction(x, 0, 1)/5625 + SingularityFunction(x, 0, 2)/1875\ - 133*SingularityFunction(x, 1, 2)/135000 + SingularityFunction(x, 3, 2)/1000\ - 37*SingularityFunction(x, 4, 2)/67500 assert b.deflection() == -SingularityFunction(x, 0, 2)/5625 + SingularityFunction(x, 0, 3)/5625\ - 133*SingularityFunction(x, 1, 3)/405000 + SingularityFunction(x, 3, 3)/3000\ - 37*SingularityFunction(x, 4, 3)/202500 def test_point_cflexure(): E = Symbol('E') I = Symbol('I') b = Beam(10, E, I) b.apply_load(-4, 0, -1) b.apply_load(-46, 6, -1) b.apply_load(10, 2, -1) b.apply_load(20, 4, -1) b.apply_load(3, 6, 0) assert b.point_cflexure() == [Rational(10, 3)] def test_remove_load(): E = Symbol('E') I = Symbol('I') b = Beam(4, E, I) try: b.remove_load(2, 1, -1) # As no load is applied on beam, ValueError should be returned. except ValueError: assert True else: assert False b.apply_load(-3, 0, -2) b.apply_load(4, 2, -1) b.apply_load(-2, 2, 2, end = 3) b.remove_load(-2, 2, 2, end = 3) assert b.load == -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) assert b.applied_loads == [(-3, 0, -2, None), (4, 2, -1, None)] try: b.remove_load(1, 2, -1) # As load of this magnitude was never applied at # this position, method should return a ValueError. except ValueError: assert True else: assert False b.remove_load(-3, 0, -2) b.remove_load(4, 2, -1) assert b.load == 0 assert b.applied_loads == [] def test_apply_support(): E = Symbol('E') I = Symbol('I') b = Beam(4, E, I) b.apply_support(0, "cantilever") b.apply_load(20, 4, -1) M_0, R_0 = symbols('M_0, R_0') b.solve_for_reaction_loads(R_0, M_0) assert simplify(b.slope()) == simplify((80*SingularityFunction(x, 0, 1) - 10*SingularityFunction(x, 0, 2) + 10*SingularityFunction(x, 4, 2))/(E*I)) assert simplify(b.deflection()) == simplify((40*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 0, 3)/3 + 10*SingularityFunction(x, 4, 3)/3)/(E*I)) b = Beam(30, E, I) b.apply_support(10, "pin") b.apply_support(30, "roller") b.apply_load(-8, 0, -1) b.apply_load(120, 30, -2) R_10, R_30 = symbols('R_10, R_30') b.solve_for_reaction_loads(R_10, R_30) assert b.slope() == (-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + Rational(4000, 3))/(E*I) assert b.deflection() == (x*Rational(4000, 3) - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3) + 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I) P = Symbol('P', positive=True) L = Symbol('L', positive=True) b = Beam(L, E, I) b.apply_support(0, type='fixed') b.apply_support(L, type='fixed') b.apply_load(-P, L/2, -1) R_0, R_L, M_0, M_L = symbols('R_0, R_L, M_0, M_L') b.solve_for_reaction_loads(R_0, R_L, M_0, M_L) assert b.reaction_loads == {R_0: P/2, R_L: P/2, M_0: -L*P/8, M_L: L*P/8} def test_max_shear_force(): E = Symbol('E') I = Symbol('I') b = Beam(3, E, I) R, M = symbols('R, M') b.apply_load(R, 0, -1) b.apply_load(M, 0, -2) b.apply_load(2, 3, -1) b.apply_load(4, 2, -1) b.apply_load(2, 2, 0, end=3) b.solve_for_reaction_loads(R, M) assert b.max_shear_force() == (Interval(0, 2), 8) l = symbols('l', positive=True) P = Symbol('P') b = Beam(l, E, I) R1, R2 = symbols('R1, R2') b.apply_load(R1, 0, -1) b.apply_load(R2, l, -1) b.apply_load(P, 0, 0, end=l) b.solve_for_reaction_loads(R1, R2) assert b.max_shear_force() == (0, l*Abs(P)/2) def test_max_bmoment(): E = Symbol('E') I = Symbol('I') l, P = symbols('l, P', positive=True) b = Beam(l, E, I) R1, R2 = symbols('R1, R2') b.apply_load(R1, 0, -1) b.apply_load(R2, l, -1) b.apply_load(P, l/2, -1) b.solve_for_reaction_loads(R1, R2) b.reaction_loads assert b.max_bmoment() == (l/2, P*l/4) b = Beam(l, E, I) R1, R2 = symbols('R1, R2') b.apply_load(R1, 0, -1) b.apply_load(R2, l, -1) b.apply_load(P, 0, 0, end=l) b.solve_for_reaction_loads(R1, R2) assert b.max_bmoment() == (l/2, P*l**2/8) def test_max_deflection(): E, I, l, F = symbols('E, I, l, F', positive=True) b = Beam(l, E, I) b.bc_deflection = [(0, 0),(l, 0)] b.bc_slope = [(0, 0),(l, 0)] b.apply_load(F/2, 0, -1) b.apply_load(-F*l/8, 0, -2) b.apply_load(F/2, l, -1) b.apply_load(F*l/8, l, -2) b.apply_load(-F, l/2, -1) assert b.max_deflection() == (l/2, F*l**3/(192*E*I)) def test_Beam3D(): l, E, G, I, A = symbols('l, E, G, I, A') R1, R2, R3, R4 = symbols('R1, R2, R3, R4') b = Beam3D(l, E, G, I, A) m, q = symbols('m, q') b.apply_load(q, 0, 0, dir="y") b.apply_moment_load(m, 0, 0, dir="z") b.bc_slope = [(0, [0, 0, 0]), (l, [0, 0, 0])] b.bc_deflection = [(0, [0, 0, 0]), (l, [0, 0, 0])] b.solve_slope_deflection() assert b.polar_moment() == 2*I assert b.shear_force() == [0, -q*x, 0] assert b.shear_stress() == [0, -q*x/A, 0] assert b.axial_stress() == 0 assert b.bending_moment() == [0, 0, -m*x + q*x**2/2] expected_deflection = (x*(A*G*q*x**3/4 + A*G*x**2*(-l*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(A*G*l**2 + 12*E*I)/2 - m) + 3*E*I*l*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(A*G*l**2 + 12*E*I) + x*(-A*G*l**2*q/2 + 3*A*G*l**2*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(A*G*l**2 + 12*E*I)/4 + A*G*l*m*Rational(3, 2) - 3*E*I*q))/(6*A*E*G*I)) dx, dy, dz = b.deflection() assert dx == dz == 0 assert simplify(dy - expected_deflection) == 0 b2 = Beam3D(30, E, G, I, A, x) b2.apply_load(50, start=0, order=0, dir="y") b2.bc_deflection = [(0, [0, 0, 0]), (30, [0, 0, 0])] b2.apply_load(R1, start=0, order=-1, dir="y") b2.apply_load(R2, start=30, order=-1, dir="y") b2.solve_for_reaction_loads(R1, R2) assert b2.reaction_loads == {R1: -750, R2: -750} b2.solve_slope_deflection() assert b2.slope() == [0, 0, 25*x**3/(3*E*I) - 375*x**2/(E*I) + 3750*x/(E*I)] expected_deflection = 25*x**4/(12*E*I) - 125*x**3/(E*I) + 1875*x**2/(E*I) - \ 25*x**2/(A*G) + 750*x/(A*G) dx, dy, dz = b2.deflection() assert dx == dz == 0 assert dy == expected_deflection # Test for solve_for_reaction_loads b3 = Beam3D(30, E, G, I, A, x) b3.apply_load(8, start=0, order=0, dir="y") b3.apply_load(9*x, start=0, order=0, dir="z") b3.apply_load(R1, start=0, order=-1, dir="y") b3.apply_load(R2, start=30, order=-1, dir="y") b3.apply_load(R3, start=0, order=-1, dir="z") b3.apply_load(R4, start=30, order=-1, dir="z") b3.solve_for_reaction_loads(R1, R2, R3, R4) assert b3.reaction_loads == {R1: -120, R2: -120, R3: -1350, R4: -2700} def test_polar_moment_Beam3D(): l, E, G, A, I1, I2 = symbols('l, E, G, A, I1, I2') I = [I1, I2] b = Beam3D(l, E, G, I, A) assert b.polar_moment() == I1 + I2 def test_parabolic_loads(): E, I, L = symbols('E, I, L', positive=True, real=True) R, M, P = symbols('R, M, P', real=True) # cantilever beam fixed at x=0 and parabolic distributed loading across # length of beam beam = Beam(L, E, I) beam.bc_deflection.append((0, 0)) beam.bc_slope.append((0, 0)) beam.apply_load(R, 0, -1) beam.apply_load(M, 0, -2) # parabolic load beam.apply_load(1, 0, 2) beam.solve_for_reaction_loads(R, M) assert beam.reaction_loads[R] == -L**3/3 # cantilever beam fixed at x=0 and parabolic distributed loading across # first half of beam beam = Beam(2*L, E, I) beam.bc_deflection.append((0, 0)) beam.bc_slope.append((0, 0)) beam.apply_load(R, 0, -1) beam.apply_load(M, 0, -2) # parabolic load from x=0 to x=L beam.apply_load(1, 0, 2, end=L) beam.solve_for_reaction_loads(R, M) # result should be the same as the prior example assert beam.reaction_loads[R] == -L**3/3 # check constant load beam = Beam(2*L, E, I) beam.apply_load(P, 0, 0, end=L) loading = beam.load.xreplace({L: 10, E: 20, I: 30, P: 40}) assert loading.xreplace({x: 5}) == 40 assert loading.xreplace({x: 15}) == 0 # check ramp load beam = Beam(2*L, E, I) beam.apply_load(P, 0, 1, end=L) assert beam.load == (P*SingularityFunction(x, 0, 1) - P*SingularityFunction(x, L, 1) - P*L*SingularityFunction(x, L, 0)) # check higher order load: x**8 load from x=0 to x=L beam = Beam(2*L, E, I) beam.apply_load(P, 0, 8, end=L) loading = beam.load.xreplace({L: 10, E: 20, I: 30, P: 40}) assert loading.xreplace({x: 5}) == 40*5**8 assert loading.xreplace({x: 15}) == 0 def test_cross_section(): I = Symbol('I') l = Symbol('l') E = Symbol('E') C3, C4 = symbols('C3, C4') a, c, g, h, r, n = symbols('a, c, g, h, r, n') # test for second_moment and cross_section setter b0 = Beam(l, E, I) assert b0.second_moment == I assert b0.cross_section == None b0.cross_section = Circle((0, 0), 5) assert b0.second_moment == pi*Rational(625, 4) assert b0.cross_section == Circle((0, 0), 5) b0.second_moment = 2*n - 6 assert b0.second_moment == 2*n-6 assert b0.cross_section == None with raises(ValueError): b0.second_moment = Circle((0, 0), 5) # beam with a circular cross-section b1 = Beam(50, E, Circle((0, 0), r)) assert b1.cross_section == Circle((0, 0), r) assert b1.second_moment == pi*r*Abs(r)**3/4 b1.apply_load(-10, 0, -1) b1.apply_load(R1, 5, -1) b1.apply_load(R2, 50, -1) b1.apply_load(90, 45, -2) b1.solve_for_reaction_loads(R1, R2) assert b1.load == (-10*SingularityFunction(x, 0, -1) + 82*SingularityFunction(x, 5, -1)/S(9) + 90*SingularityFunction(x, 45, -2) + 8*SingularityFunction(x, 50, -1)/9) assert b1.bending_moment() == (10*SingularityFunction(x, 0, 1) - 82*SingularityFunction(x, 5, 1)/9 - 90*SingularityFunction(x, 45, 0) - 8*SingularityFunction(x, 50, 1)/9) q = (-5*SingularityFunction(x, 0, 2) + 41*SingularityFunction(x, 5, 2)/S(9) + 90*SingularityFunction(x, 45, 1) + 4*SingularityFunction(x, 50, 2)/S(9))/(pi*E*r*Abs(r)**3) assert b1.slope() == C3 + 4*q q = (-5*SingularityFunction(x, 0, 3)/3 + 41*SingularityFunction(x, 5, 3)/27 + 45*SingularityFunction(x, 45, 2) + 4*SingularityFunction(x, 50, 3)/27)/(pi*E*r*Abs(r)**3) assert b1.deflection() == C3*x + C4 + 4*q # beam with a recatangular cross-section b2 = Beam(20, E, Polygon((0, 0), (a, 0), (a, c), (0, c))) assert b2.cross_section == Polygon((0, 0), (a, 0), (a, c), (0, c)) assert b2.second_moment == a*c**3/12 # beam with a triangular cross-section b3 = Beam(15, E, Triangle((0, 0), (g, 0), (g/2, h))) assert b3.cross_section == Triangle(Point2D(0, 0), Point2D(g, 0), Point2D(g/2, h)) assert b3.second_moment == g*h**3/36 # composite beam b = b2.join(b3, "fixed") b.apply_load(-30, 0, -1) b.apply_load(65, 0, -2) b.apply_load(40, 0, -1) b.bc_slope = [(0, 0)] b.bc_deflection = [(0, 0)] assert b.second_moment == Piecewise((a*c**3/12, x <= 20), (g*h**3/36, x <= 35)) assert b.cross_section == None assert b.length == 35 assert b.slope().subs(x, 7) == 8400/(E*a*c**3) assert b.slope().subs(x, 25) == 52200/(E*g*h**3) + 39600/(E*a*c**3) assert b.deflection().subs(x, 30) == -537000/(E*g*h**3) - 712000/(E*a*c**3) def test_max_shear_force_Beam3D(): x = symbols('x') b = Beam3D(20, 40, 21, 100, 25) b.apply_load(15, start=0, order=0, dir="z") b.apply_load(12*x, start=0, order=0, dir="y") b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])] assert b.max_shear_force() == [(0, 0), (20, 2400), (20, 300)] def test_max_bending_moment_Beam3D(): x = symbols('x') b = Beam3D(20, 40, 21, 100, 25) b.apply_load(15, start=0, order=0, dir="z") b.apply_load(12*x, start=0, order=0, dir="y") b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])] assert b.max_bmoment() == [(0, 0), (20, 3000), (20, 16000)] def test_max_deflection_Beam3D(): x = symbols('x') b = Beam3D(20, 40, 21, 100, 25) b.apply_load(15, start=0, order=0, dir="z") b.apply_load(12*x, start=0, order=0, dir="y") b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])] b.solve_slope_deflection() c = sympify("495/14") p = sympify("-10 + 10*sqrt(10793)/43") q = sympify("(10 - 10*sqrt(10793)/43)**3/160 - 20/7 + (10 - 10*sqrt(10793)/43)**4/6400 + 20*sqrt(10793)/301 + 27*(10 - 10*sqrt(10793)/43)**2/560") assert b.max_deflection() == [(0, 0), (10, c), (p, q)]