from sympy.core.backend import sin, cos, tan, pi, symbols, Matrix, S from sympy.physics.mechanics import (Particle, Point, ReferenceFrame, RigidBody) from sympy.physics.mechanics import (angular_momentum, dynamicsymbols, inertia, inertia_of_point_mass, kinetic_energy, linear_momentum, outer, potential_energy, msubs, find_dynamicsymbols, Lagrangian) from sympy.physics.mechanics.functions import gravity, center_of_mass from sympy.physics.vector.vector import Vector from sympy.testing.pytest import raises Vector.simp = True q1, q2, q3, q4, q5 = symbols('q1 q2 q3 q4 q5') N = ReferenceFrame('N') A = N.orientnew('A', 'Axis', [q1, N.z]) B = A.orientnew('B', 'Axis', [q2, A.x]) C = B.orientnew('C', 'Axis', [q3, B.y]) def test_inertia(): N = ReferenceFrame('N') ixx, iyy, izz = symbols('ixx iyy izz') ixy, iyz, izx = symbols('ixy iyz izx') assert inertia(N, ixx, iyy, izz) == (ixx * (N.x | N.x) + iyy * (N.y | N.y) + izz * (N.z | N.z)) assert inertia(N, 0, 0, 0) == 0 * (N.x | N.x) raises(TypeError, lambda: inertia(0, 0, 0, 0)) assert inertia(N, ixx, iyy, izz, ixy, iyz, izx) == (ixx * (N.x | N.x) + ixy * (N.x | N.y) + izx * (N.x | N.z) + ixy * (N.y | N.x) + iyy * (N.y | N.y) + iyz * (N.y | N.z) + izx * (N.z | N.x) + iyz * (N.z | N.y) + izz * (N.z | N.z)) def test_inertia_of_point_mass(): r, s, t, m = symbols('r s t m') N = ReferenceFrame('N') px = r * N.x I = inertia_of_point_mass(m, px, N) assert I == m * r**2 * (N.y | N.y) + m * r**2 * (N.z | N.z) py = s * N.y I = inertia_of_point_mass(m, py, N) assert I == m * s**2 * (N.x | N.x) + m * s**2 * (N.z | N.z) pz = t * N.z I = inertia_of_point_mass(m, pz, N) assert I == m * t**2 * (N.x | N.x) + m * t**2 * (N.y | N.y) p = px + py + pz I = inertia_of_point_mass(m, p, N) assert I == (m * (s**2 + t**2) * (N.x | N.x) - m * r * s * (N.x | N.y) - m * r * t * (N.x | N.z) - m * r * s * (N.y | N.x) + m * (r**2 + t**2) * (N.y | N.y) - m * s * t * (N.y | N.z) - m * r * t * (N.z | N.x) - m * s * t * (N.z | N.y) + m * (r**2 + s**2) * (N.z | N.z)) def test_linear_momentum(): N = ReferenceFrame('N') Ac = Point('Ac') Ac.set_vel(N, 25 * N.y) I = outer(N.x, N.x) A = RigidBody('A', Ac, N, 20, (I, Ac)) P = Point('P') Pa = Particle('Pa', P, 1) Pa.point.set_vel(N, 10 * N.x) raises(TypeError, lambda: linear_momentum(A, A, Pa)) raises(TypeError, lambda: linear_momentum(N, N, Pa)) assert linear_momentum(N, A, Pa) == 10 * N.x + 500 * N.y def test_angular_momentum_and_linear_momentum(): """A rod with length 2l, centroidal inertia I, and mass M along with a particle of mass m fixed to the end of the rod rotate with an angular rate of omega about point O which is fixed to the non-particle end of the rod. The rod's reference frame is A and the inertial frame is N.""" m, M, l, I = symbols('m, M, l, I') omega = dynamicsymbols('omega') N = ReferenceFrame('N') a = ReferenceFrame('a') O = Point('O') Ac = O.locatenew('Ac', l * N.x) P = Ac.locatenew('P', l * N.x) O.set_vel(N, 0 * N.x) a.set_ang_vel(N, omega * N.z) Ac.v2pt_theory(O, N, a) P.v2pt_theory(O, N, a) Pa = Particle('Pa', P, m) A = RigidBody('A', Ac, a, M, (I * outer(N.z, N.z), Ac)) expected = 2 * m * omega * l * N.y + M * l * omega * N.y assert linear_momentum(N, A, Pa) == expected raises(TypeError, lambda: angular_momentum(N, N, A, Pa)) raises(TypeError, lambda: angular_momentum(O, O, A, Pa)) raises(TypeError, lambda: angular_momentum(O, N, O, Pa)) expected = (I + M * l**2 + 4 * m * l**2) * omega * N.z assert angular_momentum(O, N, A, Pa) == expected def test_kinetic_energy(): m, M, l1 = symbols('m M l1') omega = dynamicsymbols('omega') N = ReferenceFrame('N') O = Point('O') O.set_vel(N, 0 * N.x) Ac = O.locatenew('Ac', l1 * N.x) P = Ac.locatenew('P', l1 * N.x) a = ReferenceFrame('a') a.set_ang_vel(N, omega * N.z) Ac.v2pt_theory(O, N, a) P.v2pt_theory(O, N, a) Pa = Particle('Pa', P, m) I = outer(N.z, N.z) A = RigidBody('A', Ac, a, M, (I, Ac)) raises(TypeError, lambda: kinetic_energy(Pa, Pa, A)) raises(TypeError, lambda: kinetic_energy(N, N, A)) assert 0 == (kinetic_energy(N, Pa, A) - (M*l1**2*omega**2/2 + 2*l1**2*m*omega**2 + omega**2/2)).expand() def test_potential_energy(): m, M, l1, g, h, H = symbols('m M l1 g h H') omega = dynamicsymbols('omega') N = ReferenceFrame('N') O = Point('O') O.set_vel(N, 0 * N.x) Ac = O.locatenew('Ac', l1 * N.x) P = Ac.locatenew('P', l1 * N.x) a = ReferenceFrame('a') a.set_ang_vel(N, omega * N.z) Ac.v2pt_theory(O, N, a) P.v2pt_theory(O, N, a) Pa = Particle('Pa', P, m) I = outer(N.z, N.z) A = RigidBody('A', Ac, a, M, (I, Ac)) Pa.potential_energy = m * g * h A.potential_energy = M * g * H assert potential_energy(A, Pa) == m * g * h + M * g * H def test_Lagrangian(): M, m, g, h = symbols('M m g h') N = ReferenceFrame('N') O = Point('O') O.set_vel(N, 0 * N.x) P = O.locatenew('P', 1 * N.x) P.set_vel(N, 10 * N.x) Pa = Particle('Pa', P, 1) Ac = O.locatenew('Ac', 2 * N.y) Ac.set_vel(N, 5 * N.y) a = ReferenceFrame('a') a.set_ang_vel(N, 10 * N.z) I = outer(N.z, N.z) A = RigidBody('A', Ac, a, 20, (I, Ac)) Pa.potential_energy = m * g * h A.potential_energy = M * g * h raises(TypeError, lambda: Lagrangian(A, A, Pa)) raises(TypeError, lambda: Lagrangian(N, N, Pa)) def test_msubs(): a, b = symbols('a, b') x, y, z = dynamicsymbols('x, y, z') # Test simple substitution expr = Matrix([[a*x + b, x*y.diff() + y], [x.diff().diff(), z + sin(z.diff())]]) sol = Matrix([[a + b, y], [x.diff().diff(), 1]]) sd = {x: 1, z: 1, z.diff(): 0, y.diff(): 0} assert msubs(expr, sd) == sol # Test smart substitution expr = cos(x + y)*tan(x + y) + b*x.diff() sd = {x: 0, y: pi/2, x.diff(): 1} assert msubs(expr, sd, smart=True) == b + 1 N = ReferenceFrame('N') v = x*N.x + y*N.y d = x*(N.x|N.x) + y*(N.y|N.y) v_sol = 1*N.y d_sol = 1*(N.y|N.y) sd = {x: 0, y: 1} assert msubs(v, sd) == v_sol assert msubs(d, sd) == d_sol def test_find_dynamicsymbols(): a, b = symbols('a, b') x, y, z = dynamicsymbols('x, y, z') expr = Matrix([[a*x + b, x*y.diff() + y], [x.diff().diff(), z + sin(z.diff())]]) # Test finding all dynamicsymbols sol = {x, y.diff(), y, x.diff().diff(), z, z.diff()} assert find_dynamicsymbols(expr) == sol # Test finding all but those in sym_list exclude_list = [x, y, z] sol = {y.diff(), x.diff().diff(), z.diff()} assert find_dynamicsymbols(expr, exclude=exclude_list) == sol # Test finding all dynamicsymbols in a vector with a given reference frame d, e, f = dynamicsymbols('d, e, f') A = ReferenceFrame('A') v = d * A.x + e * A.y + f * A.z sol = {d, e, f} assert find_dynamicsymbols(v, reference_frame=A) == sol # Test if a ValueError is raised on supplying only a vector as input raises(ValueError, lambda: find_dynamicsymbols(v)) def test_gravity(): N = ReferenceFrame('N') m, M, g = symbols('m M g') F1, F2 = dynamicsymbols('F1 F2') po = Point('po') pa = Particle('pa', po, m) A = ReferenceFrame('A') P = Point('P') I = outer(A.x, A.x) B = RigidBody('B', P, A, M, (I, P)) forceList = [(po, F1), (P, F2)] forceList.extend(gravity(g*N.y, pa, B)) l = [(po, F1), (P, F2), (po, g*m*N.y), (P, g*M*N.y)] for i in range(len(l)): for j in range(len(l[i])): assert forceList[i][j] == l[i][j] # This function tests the center_of_mass() function # that was added in PR #14758 to compute the center of # mass of a system of bodies. def test_center_of_mass(): a = ReferenceFrame('a') m = symbols('m', real=True) p1 = Particle('p1', Point('p1_pt'), S.One) p2 = Particle('p2', Point('p2_pt'), S(2)) p3 = Particle('p3', Point('p3_pt'), S(3)) p4 = Particle('p4', Point('p4_pt'), m) b_f = ReferenceFrame('b_f') b_cm = Point('b_cm') mb = symbols('mb') b = RigidBody('b', b_cm, b_f, mb, (outer(b_f.x, b_f.x), b_cm)) p2.point.set_pos(p1.point, a.x) p3.point.set_pos(p1.point, a.x + a.y) p4.point.set_pos(p1.point, a.y) b.masscenter.set_pos(p1.point, a.y + a.z) point_o=Point('o') point_o.set_pos(p1.point, center_of_mass(p1.point, p1, p2, p3, p4, b)) expr = 5/(m + mb + 6)*a.x + (m + mb + 3)/(m + mb + 6)*a.y + mb/(m + mb + 6)*a.z assert point_o.pos_from(p1.point)-expr == 0