from sympy.core.symbol import symbols from sympy.physics.mechanics import Point, ReferenceFrame, Dyadic, RigidBody from sympy.physics.mechanics import dynamicsymbols, outer, inertia from sympy.physics.mechanics import inertia_of_point_mass from sympy.core.backend import expand from sympy.testing.pytest import raises, warns_deprecated_sympy def test_rigidbody(): m, m2, v1, v2, v3, omega = symbols('m m2 v1 v2 v3 omega') A = ReferenceFrame('A') A2 = ReferenceFrame('A2') P = Point('P') P2 = Point('P2') I = Dyadic(0) I2 = Dyadic(0) B = RigidBody('B', P, A, m, (I, P)) assert B.mass == m assert B.frame == A assert B.masscenter == P assert B.inertia == (I, B.masscenter) B.mass = m2 B.frame = A2 B.masscenter = P2 B.inertia = (I2, B.masscenter) raises(TypeError, lambda: RigidBody(P, P, A, m, (I, P))) raises(TypeError, lambda: RigidBody('B', P, P, m, (I, P))) raises(TypeError, lambda: RigidBody('B', P, A, m, (P, P))) raises(TypeError, lambda: RigidBody('B', P, A, m, (I, I))) assert B.__str__() == 'B' assert B.mass == m2 assert B.frame == A2 assert B.masscenter == P2 assert B.inertia == (I2, B.masscenter) assert B.masscenter == P2 assert B.inertia == (I2, B.masscenter) # Testing linear momentum function assuming A2 is the inertial frame N = ReferenceFrame('N') P2.set_vel(N, v1 * N.x + v2 * N.y + v3 * N.z) assert B.linear_momentum(N) == m2 * (v1 * N.x + v2 * N.y + v3 * N.z) def test_rigidbody2(): M, v, r, omega, g, h = dynamicsymbols('M v r omega g h') N = ReferenceFrame('N') b = ReferenceFrame('b') b.set_ang_vel(N, omega * b.x) P = Point('P') I = outer(b.x, b.x) Inertia_tuple = (I, P) B = RigidBody('B', P, b, M, Inertia_tuple) P.set_vel(N, v * b.x) assert B.angular_momentum(P, N) == omega * b.x O = Point('O') O.set_vel(N, v * b.x) P.set_pos(O, r * b.y) assert B.angular_momentum(O, N) == omega * b.x - M*v*r*b.z B.potential_energy = M * g * h assert B.potential_energy == M * g * h assert expand(2 * B.kinetic_energy(N)) == omega**2 + M * v**2 def test_rigidbody3(): q1, q2, q3, q4 = dynamicsymbols('q1:5') p1, p2, p3 = symbols('p1:4') m = symbols('m') A = ReferenceFrame('A') B = A.orientnew('B', 'axis', [q1, A.x]) O = Point('O') O.set_vel(A, q2*A.x + q3*A.y + q4*A.z) P = O.locatenew('P', p1*B.x + p2*B.y + p3*B.z) P.v2pt_theory(O, A, B) I = outer(B.x, B.x) rb1 = RigidBody('rb1', P, B, m, (I, P)) # I_S/O = I_S/S* + I_S*/O rb2 = RigidBody('rb2', P, B, m, (I + inertia_of_point_mass(m, P.pos_from(O), B), O)) assert rb1.central_inertia == rb2.central_inertia assert rb1.angular_momentum(O, A) == rb2.angular_momentum(O, A) def test_pendulum_angular_momentum(): """Consider a pendulum of length OA = 2a, of mass m as a rigid body of center of mass G (OG = a) which turn around (O,z). The angle between the reference frame R and the rod is q. The inertia of the body is I = (G,0,ma^2/3,ma^2/3). """ m, a = symbols('m, a') q = dynamicsymbols('q') R = ReferenceFrame('R') R1 = R.orientnew('R1', 'Axis', [q, R.z]) R1.set_ang_vel(R, q.diff() * R.z) I = inertia(R1, 0, m * a**2 / 3, m * a**2 / 3) O = Point('O') A = O.locatenew('A', 2*a * R1.x) G = O.locatenew('G', a * R1.x) S = RigidBody('S', G, R1, m, (I, G)) O.set_vel(R, 0) A.v2pt_theory(O, R, R1) G.v2pt_theory(O, R, R1) assert (4 * m * a**2 / 3 * q.diff() * R.z - S.angular_momentum(O, R).express(R)) == 0 def test_parallel_axis(): N = ReferenceFrame('N') m, Ix, Iy, Iz, a, b = symbols('m, I_x, I_y, I_z, a, b') Io = inertia(N, Ix, Iy, Iz) o = Point('o') p = o.locatenew('p', a * N.x + b * N.y) R = RigidBody('R', o, N, m, (Io, o)) Ip = R.parallel_axis(p) Ip_expected = inertia(N, Ix + m * b**2, Iy + m * a**2, Iz + m * (a**2 + b**2), ixy=-m * a * b) assert Ip == Ip_expected def test_deprecated_set_potential_energy(): m, g, h = symbols('m g h') A = ReferenceFrame('A') P = Point('P') I = Dyadic(0) B = RigidBody('B', P, A, m, (I, P)) with warns_deprecated_sympy(): B.set_potential_energy(m*g*h)