from sympy.core.random import randint from sympy.core.numbers import Integer from sympy.matrices.dense import (Matrix, ones, zeros) from sympy.physics.quantum.matrixutils import ( to_sympy, to_numpy, to_scipy_sparse, matrix_tensor_product, matrix_to_zero, matrix_zeros, numpy_ndarray, scipy_sparse_matrix ) from sympy.external import import_module from sympy.testing.pytest import skip m = Matrix([[1, 2], [3, 4]]) def test_sympy_to_sympy(): assert to_sympy(m) == m def test_matrix_to_zero(): assert matrix_to_zero(m) == m assert matrix_to_zero(Matrix([[0, 0], [0, 0]])) == Integer(0) np = import_module('numpy') def test_to_numpy(): if not np: skip("numpy not installed.") result = np.matrix([[1, 2], [3, 4]], dtype='complex') assert (to_numpy(m) == result).all() def test_matrix_tensor_product(): if not np: skip("numpy not installed.") l1 = zeros(4) for i in range(16): l1[i] = 2**i l2 = zeros(4) for i in range(16): l2[i] = i l3 = zeros(2) for i in range(4): l3[i] = i vec = Matrix([1, 2, 3]) #test for Matrix known 4x4 matricies numpyl1 = np.matrix(l1.tolist()) numpyl2 = np.matrix(l2.tolist()) numpy_product = np.kron(numpyl1, numpyl2) args = [l1, l2] sympy_product = matrix_tensor_product(*args) assert numpy_product.tolist() == sympy_product.tolist() numpy_product = np.kron(numpyl2, numpyl1) args = [l2, l1] sympy_product = matrix_tensor_product(*args) assert numpy_product.tolist() == sympy_product.tolist() #test for other known matrix of different dimensions numpyl2 = np.matrix(l3.tolist()) numpy_product = np.kron(numpyl1, numpyl2) args = [l1, l3] sympy_product = matrix_tensor_product(*args) assert numpy_product.tolist() == sympy_product.tolist() numpy_product = np.kron(numpyl2, numpyl1) args = [l3, l1] sympy_product = matrix_tensor_product(*args) assert numpy_product.tolist() == sympy_product.tolist() #test for non square matrix numpyl2 = np.matrix(vec.tolist()) numpy_product = np.kron(numpyl1, numpyl2) args = [l1, vec] sympy_product = matrix_tensor_product(*args) assert numpy_product.tolist() == sympy_product.tolist() numpy_product = np.kron(numpyl2, numpyl1) args = [vec, l1] sympy_product = matrix_tensor_product(*args) assert numpy_product.tolist() == sympy_product.tolist() #test for random matrix with random values that are floats random_matrix1 = np.random.rand(randint(1, 5), randint(1, 5)) random_matrix2 = np.random.rand(randint(1, 5), randint(1, 5)) numpy_product = np.kron(random_matrix1, random_matrix2) args = [Matrix(random_matrix1.tolist()), Matrix(random_matrix2.tolist())] sympy_product = matrix_tensor_product(*args) assert not (sympy_product - Matrix(numpy_product.tolist())).tolist() > \ (ones(sympy_product.rows, sympy_product.cols)*epsilon).tolist() #test for three matrix kronecker sympy_product = matrix_tensor_product(l1, vec, l2) numpy_product = np.kron(l1, np.kron(vec, l2)) assert numpy_product.tolist() == sympy_product.tolist() scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']}) def test_to_scipy_sparse(): if not np: skip("numpy not installed.") if not scipy: skip("scipy not installed.") else: sparse = scipy.sparse result = sparse.csr_matrix([[1, 2], [3, 4]], dtype='complex') assert np.linalg.norm((to_scipy_sparse(m) - result).todense()) == 0.0 epsilon = .000001 def test_matrix_zeros_sympy(): sym = matrix_zeros(4, 4, format='sympy') assert isinstance(sym, Matrix) def test_matrix_zeros_numpy(): if not np: skip("numpy not installed.") num = matrix_zeros(4, 4, format='numpy') assert isinstance(num, numpy_ndarray) def test_matrix_zeros_scipy(): if not np: skip("numpy not installed.") if not scipy: skip("scipy not installed.") sci = matrix_zeros(4, 4, format='scipy.sparse') assert isinstance(sci, scipy_sparse_matrix)