import random from sympy.core.numbers import (Integer, Rational) from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.functions.elementary.miscellaneous import sqrt from sympy.matrices.dense import Matrix from sympy.physics.quantum.qubit import (measure_all, measure_partial, matrix_to_qubit, matrix_to_density, qubit_to_matrix, IntQubit, IntQubitBra, QubitBra) from sympy.physics.quantum.gate import (HadamardGate, CNOT, XGate, YGate, ZGate, PhaseGate) from sympy.physics.quantum.qapply import qapply from sympy.physics.quantum.represent import represent from sympy.physics.quantum.shor import Qubit from sympy.testing.pytest import raises from sympy.physics.quantum.density import Density from sympy.physics.quantum.trace import Tr x, y = symbols('x,y') epsilon = .000001 def test_Qubit(): array = [0, 0, 1, 1, 0] qb = Qubit('00110') assert qb.flip(0) == Qubit('00111') assert qb.flip(1) == Qubit('00100') assert qb.flip(4) == Qubit('10110') assert qb.qubit_values == (0, 0, 1, 1, 0) assert qb.dimension == 5 for i in range(5): assert qb[i] == array[4 - i] assert len(qb) == 5 qb = Qubit('110') def test_QubitBra(): qb = Qubit(0) qb_bra = QubitBra(0) assert qb.dual_class() == QubitBra assert qb_bra.dual_class() == Qubit qb = Qubit(1, 1, 0) qb_bra = QubitBra(1, 1, 0) assert represent(qb, nqubits=3).H == represent(qb_bra, nqubits=3) qb = Qubit(0, 1) qb_bra = QubitBra(1,0) assert qb._eval_innerproduct_QubitBra(qb_bra) == Integer(0) qb_bra = QubitBra(0, 1) assert qb._eval_innerproduct_QubitBra(qb_bra) == Integer(1) def test_IntQubit(): # issue 9136 iqb = IntQubit(0, nqubits=1) assert qubit_to_matrix(Qubit('0')) == qubit_to_matrix(iqb) qb = Qubit('1010') assert qubit_to_matrix(IntQubit(qb)) == qubit_to_matrix(qb) iqb = IntQubit(1, nqubits=1) assert qubit_to_matrix(Qubit('1')) == qubit_to_matrix(iqb) assert qubit_to_matrix(IntQubit(1)) == qubit_to_matrix(iqb) iqb = IntQubit(7, nqubits=4) assert qubit_to_matrix(Qubit('0111')) == qubit_to_matrix(iqb) assert qubit_to_matrix(IntQubit(7, 4)) == qubit_to_matrix(iqb) iqb = IntQubit(8) assert iqb.as_int() == 8 assert iqb.qubit_values == (1, 0, 0, 0) iqb = IntQubit(7, 4) assert iqb.qubit_values == (0, 1, 1, 1) assert IntQubit(3) == IntQubit(3, 2) #test Dual Classes iqb = IntQubit(3) iqb_bra = IntQubitBra(3) assert iqb.dual_class() == IntQubitBra assert iqb_bra.dual_class() == IntQubit iqb = IntQubit(5) iqb_bra = IntQubitBra(5) assert iqb._eval_innerproduct_IntQubitBra(iqb_bra) == Integer(1) iqb = IntQubit(4) iqb_bra = IntQubitBra(5) assert iqb._eval_innerproduct_IntQubitBra(iqb_bra) == Integer(0) raises(ValueError, lambda: IntQubit(4, 1)) raises(ValueError, lambda: IntQubit('5')) raises(ValueError, lambda: IntQubit(5, '5')) raises(ValueError, lambda: IntQubit(5, nqubits='5')) raises(TypeError, lambda: IntQubit(5, bad_arg=True)) def test_superposition_of_states(): state = 1/sqrt(2)*Qubit('01') + 1/sqrt(2)*Qubit('10') state_gate = CNOT(0, 1)*HadamardGate(0)*state state_expanded = Qubit('01')/2 + Qubit('00')/2 - Qubit('11')/2 + Qubit('10')/2 assert qapply(state_gate).expand() == state_expanded assert matrix_to_qubit(represent(state_gate, nqubits=2)) == state_expanded #test apply methods def test_apply_represent_equality(): gates = [HadamardGate(int(3*random.random())), XGate(int(3*random.random())), ZGate(int(3*random.random())), YGate(int(3*random.random())), ZGate(int(3*random.random())), PhaseGate(int(3*random.random()))] circuit = Qubit(int(random.random()*2), int(random.random()*2), int(random.random()*2), int(random.random()*2), int(random.random()*2), int(random.random()*2)) for i in range(int(random.random()*6)): circuit = gates[int(random.random()*6)]*circuit mat = represent(circuit, nqubits=6) states = qapply(circuit) state_rep = matrix_to_qubit(mat) states = states.expand() state_rep = state_rep.expand() assert state_rep == states def test_matrix_to_qubits(): qb = Qubit(0, 0, 0, 0) mat = Matrix([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) assert matrix_to_qubit(mat) == qb assert qubit_to_matrix(qb) == mat state = 2*sqrt(2)*(Qubit(0, 0, 0) + Qubit(0, 0, 1) + Qubit(0, 1, 0) + Qubit(0, 1, 1) + Qubit(1, 0, 0) + Qubit(1, 0, 1) + Qubit(1, 1, 0) + Qubit(1, 1, 1)) ones = sqrt(2)*2*Matrix([1, 1, 1, 1, 1, 1, 1, 1]) assert matrix_to_qubit(ones) == state.expand() assert qubit_to_matrix(state) == ones def test_measure_normalize(): a, b = symbols('a b') state = a*Qubit('110') + b*Qubit('111') assert measure_partial(state, (0,), normalize=False) == \ [(a*Qubit('110'), a*a.conjugate()), (b*Qubit('111'), b*b.conjugate())] assert measure_all(state, normalize=False) == \ [(Qubit('110'), a*a.conjugate()), (Qubit('111'), b*b.conjugate())] def test_measure_partial(): #Basic test of collapse of entangled two qubits (Bell States) state = Qubit('01') + Qubit('10') assert measure_partial(state, (0,)) == \ [(Qubit('10'), S.Half), (Qubit('01'), S.Half)] assert measure_partial(state, int(0)) == \ [(Qubit('10'), S.Half), (Qubit('01'), S.Half)] assert measure_partial(state, (0,)) == \ measure_partial(state, (1,))[::-1] #Test of more complex collapse and probability calculation state1 = sqrt(2)/sqrt(3)*Qubit('00001') + 1/sqrt(3)*Qubit('11111') assert measure_partial(state1, (0,)) == \ [(sqrt(2)/sqrt(3)*Qubit('00001') + 1/sqrt(3)*Qubit('11111'), 1)] assert measure_partial(state1, (1, 2)) == measure_partial(state1, (3, 4)) assert measure_partial(state1, (1, 2, 3)) == \ [(Qubit('00001'), Rational(2, 3)), (Qubit('11111'), Rational(1, 3))] #test of measuring multiple bits at once state2 = Qubit('1111') + Qubit('1101') + Qubit('1011') + Qubit('1000') assert measure_partial(state2, (0, 1, 3)) == \ [(Qubit('1000'), Rational(1, 4)), (Qubit('1101'), Rational(1, 4)), (Qubit('1011')/sqrt(2) + Qubit('1111')/sqrt(2), S.Half)] assert measure_partial(state2, (0,)) == \ [(Qubit('1000'), Rational(1, 4)), (Qubit('1111')/sqrt(3) + Qubit('1101')/sqrt(3) + Qubit('1011')/sqrt(3), Rational(3, 4))] def test_measure_all(): assert measure_all(Qubit('11')) == [(Qubit('11'), 1)] state = Qubit('11') + Qubit('10') assert measure_all(state) == [(Qubit('10'), S.Half), (Qubit('11'), S.Half)] state2 = Qubit('11')/sqrt(5) + 2*Qubit('00')/sqrt(5) assert measure_all(state2) == \ [(Qubit('00'), Rational(4, 5)), (Qubit('11'), Rational(1, 5))] # from issue #12585 assert measure_all(qapply(Qubit('0'))) == [(Qubit('0'), 1)] def test_eval_trace(): q1 = Qubit('10110') q2 = Qubit('01010') d = Density([q1, 0.6], [q2, 0.4]) t = Tr(d) assert t.doit() == 1 # extreme bits t = Tr(d, 0) assert t.doit() == (0.4*Density([Qubit('0101'), 1]) + 0.6*Density([Qubit('1011'), 1])) t = Tr(d, 4) assert t.doit() == (0.4*Density([Qubit('1010'), 1]) + 0.6*Density([Qubit('0110'), 1])) # index somewhere in between t = Tr(d, 2) assert t.doit() == (0.4*Density([Qubit('0110'), 1]) + 0.6*Density([Qubit('1010'), 1])) #trace all indices t = Tr(d, [0, 1, 2, 3, 4]) assert t.doit() == 1 # trace some indices, initialized in # non-canonical order t = Tr(d, [2, 1, 3]) assert t.doit() == (0.4*Density([Qubit('00'), 1]) + 0.6*Density([Qubit('10'), 1])) # mixed states q = (1/sqrt(2)) * (Qubit('00') + Qubit('11')) d = Density( [q, 1.0] ) t = Tr(d, 0) assert t.doit() == (0.5*Density([Qubit('0'), 1]) + 0.5*Density([Qubit('1'), 1])) def test_matrix_to_density(): mat = Matrix([[0, 0], [0, 1]]) assert matrix_to_density(mat) == Density([Qubit('1'), 1]) mat = Matrix([[1, 0], [0, 0]]) assert matrix_to_density(mat) == Density([Qubit('0'), 1]) mat = Matrix([[0, 0], [0, 0]]) assert matrix_to_density(mat) == 0 mat = Matrix([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 0]]) assert matrix_to_density(mat) == Density([Qubit('10'), 1]) mat = Matrix([[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]) assert matrix_to_density(mat) == Density([Qubit('00'), 1])