# -*- coding: utf-8 -*- from sympy.concrete.products import Product from sympy.concrete.summations import Sum from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.containers import (Dict, Tuple) from sympy.core.function import (Derivative, Function, Lambda, Subs) from sympy.core.mul import Mul from sympy.core import (EulerGamma, GoldenRatio, Catalan) from sympy.core.numbers import (I, Rational, oo, pi) from sympy.core.power import Pow from sympy.core.relational import (Eq, Ge, Gt, Le, Lt, Ne) from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.functions.elementary.complexes import conjugate from sympy.functions.elementary.exponential import LambertW from sympy.functions.special.bessel import (airyai, airyaiprime, airybi, airybiprime) from sympy.functions.special.delta_functions import Heaviside from sympy.functions.special.error_functions import (fresnelc, fresnels) from sympy.functions.special.singularity_functions import SingularityFunction from sympy.functions.special.zeta_functions import dirichlet_eta from sympy.geometry.line import (Ray, Segment) from sympy.integrals.integrals import Integral from sympy.logic.boolalg import (And, Equivalent, ITE, Implies, Nand, Nor, Not, Or, Xor) from sympy.matrices.dense import (Matrix, diag) from sympy.matrices.expressions.slice import MatrixSlice from sympy.matrices.expressions.trace import Trace from sympy.polys.domains.finitefield import FF from sympy.polys.domains.integerring import ZZ from sympy.polys.domains.rationalfield import QQ from sympy.polys.domains.realfield import RR from sympy.polys.orderings import (grlex, ilex) from sympy.polys.polytools import groebner from sympy.polys.rootoftools import (RootSum, rootof) from sympy.series.formal import fps from sympy.series.fourier import fourier_series from sympy.series.limits import Limit from sympy.series.order import O from sympy.series.sequences import (SeqAdd, SeqFormula, SeqMul, SeqPer) from sympy.sets.contains import Contains from sympy.sets.fancysets import Range from sympy.sets.sets import (Complement, FiniteSet, Intersection, Interval, Union) from sympy.codegen.ast import (Assignment, AddAugmentedAssignment, SubAugmentedAssignment, MulAugmentedAssignment, DivAugmentedAssignment, ModAugmentedAssignment) from sympy.core.expr import UnevaluatedExpr from sympy.physics.quantum.trace import Tr from sympy.functions import (Abs, Chi, Ci, Ei, KroneckerDelta, Piecewise, Shi, Si, atan2, beta, binomial, catalan, ceiling, cos, euler, exp, expint, factorial, factorial2, floor, gamma, hyper, log, meijerg, sin, sqrt, subfactorial, tan, uppergamma, lerchphi, elliptic_k, elliptic_f, elliptic_e, elliptic_pi, DiracDelta, bell, bernoulli, fibonacci, tribonacci, lucas, stieltjes, mathieuc, mathieus, mathieusprime, mathieucprime) from sympy.matrices import Adjoint, Inverse, MatrixSymbol, Transpose, KroneckerProduct from sympy.matrices.expressions import hadamard_power from sympy.physics import mechanics from sympy.physics.control.lti import (TransferFunction, Feedback, TransferFunctionMatrix, Series, Parallel, MIMOSeries, MIMOParallel, MIMOFeedback) from sympy.physics.units import joule, degree from sympy.printing.pretty import pprint, pretty as xpretty from sympy.printing.pretty.pretty_symbology import center_accent, is_combining from sympy.sets.conditionset import ConditionSet from sympy.sets import ImageSet, ProductSet from sympy.sets.setexpr import SetExpr from sympy.stats.crv_types import Normal from sympy.stats.symbolic_probability import (Covariance, Expectation, Probability, Variance) from sympy.tensor.array import (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray, tensorproduct) from sympy.tensor.functions import TensorProduct from sympy.tensor.tensor import (TensorIndexType, tensor_indices, TensorHead, TensorElement, tensor_heads) from sympy.testing.pytest import raises, _both_exp_pow, warns_deprecated_sympy from sympy.vector import CoordSys3D, Gradient, Curl, Divergence, Dot, Cross, Laplacian import sympy as sym class lowergamma(sym.lowergamma): pass # testing notation inheritance by a subclass with same name a, b, c, d, x, y, z, k, n, s, p = symbols('a,b,c,d,x,y,z,k,n,s,p') f = Function("f") th = Symbol('theta') ph = Symbol('phi') """ Expressions whose pretty-printing is tested here: (A '#' to the right of an expression indicates that its various acceptable orderings are accounted for by the tests.) BASIC EXPRESSIONS: oo (x**2) 1/x y*x**-2 x**Rational(-5,2) (-2)**x Pow(3, 1, evaluate=False) (x**2 + x + 1) # 1-x # 1-2*x # x/y -x/y (x+2)/y # (1+x)*y #3 -5*x/(x+10) # correct placement of negative sign 1 - Rational(3,2)*(x+1) -(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5) # issue 5524 ORDERING: x**2 + x + 1 1 - x 1 - 2*x 2*x**4 + y**2 - x**2 + y**3 RELATIONAL: Eq(x, y) Lt(x, y) Gt(x, y) Le(x, y) Ge(x, y) Ne(x/(y+1), y**2) # RATIONAL NUMBERS: y*x**-2 y**Rational(3,2) * x**Rational(-5,2) sin(x)**3/tan(x)**2 FUNCTIONS (ABS, CONJ, EXP, FUNCTION BRACES, FACTORIAL, FLOOR, CEILING): (2*x + exp(x)) # Abs(x) Abs(x/(x**2+1)) # Abs(1 / (y - Abs(x))) factorial(n) factorial(2*n) subfactorial(n) subfactorial(2*n) factorial(factorial(factorial(n))) factorial(n+1) # conjugate(x) conjugate(f(x+1)) # f(x) f(x, y) f(x/(y+1), y) # f(x**x**x**x**x**x) sin(x)**2 conjugate(a+b*I) conjugate(exp(a+b*I)) conjugate( f(1 + conjugate(f(x))) ) # f(x/(y+1), y) # denom of first arg floor(1 / (y - floor(x))) ceiling(1 / (y - ceiling(x))) SQRT: sqrt(2) 2**Rational(1,3) 2**Rational(1,1000) sqrt(x**2 + 1) (1 + sqrt(5))**Rational(1,3) 2**(1/x) sqrt(2+pi) (2+(1+x**2)/(2+x))**Rational(1,4)+(1+x**Rational(1,1000))/sqrt(3+x**2) DERIVATIVES: Derivative(log(x), x, evaluate=False) Derivative(log(x), x, evaluate=False) + x # Derivative(log(x) + x**2, x, y, evaluate=False) Derivative(2*x*y, y, x, evaluate=False) + x**2 # beta(alpha).diff(alpha) INTEGRALS: Integral(log(x), x) Integral(x**2, x) Integral((sin(x))**2 / (tan(x))**2) Integral(x**(2**x), x) Integral(x**2, (x,1,2)) Integral(x**2, (x,Rational(1,2),10)) Integral(x**2*y**2, x,y) Integral(x**2, (x, None, 1)) Integral(x**2, (x, 1, None)) Integral(sin(th)/cos(ph), (th,0,pi), (ph, 0, 2*pi)) MATRICES: Matrix([[x**2+1, 1], [y, x+y]]) # Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]]) PIECEWISE: Piecewise((x,x<1),(x**2,True)) ITE: ITE(x, y, z) SEQUENCES (TUPLES, LISTS, DICTIONARIES): () [] {} (1/x,) [x**2, 1/x, x, y, sin(th)**2/cos(ph)**2] (x**2, 1/x, x, y, sin(th)**2/cos(ph)**2) {x: sin(x)} {1/x: 1/y, x: sin(x)**2} # [x**2] (x**2,) {x**2: 1} LIMITS: Limit(x, x, oo) Limit(x**2, x, 0) Limit(1/x, x, 0) Limit(sin(x)/x, x, 0) UNITS: joule => kg*m**2/s SUBS: Subs(f(x), x, ph**2) Subs(f(x).diff(x), x, 0) Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2))) ORDER: O(1) O(1/x) O(x**2 + y**2) """ def pretty(expr, order=None): """ASCII pretty-printing""" return xpretty(expr, order=order, use_unicode=False, wrap_line=False) def upretty(expr, order=None): """Unicode pretty-printing""" return xpretty(expr, order=order, use_unicode=True, wrap_line=False) def test_pretty_ascii_str(): assert pretty( 'xxx' ) == 'xxx' assert pretty( "xxx" ) == 'xxx' assert pretty( 'xxx\'xxx' ) == 'xxx\'xxx' assert pretty( 'xxx"xxx' ) == 'xxx\"xxx' assert pretty( 'xxx\"xxx' ) == 'xxx\"xxx' assert pretty( "xxx'xxx" ) == 'xxx\'xxx' assert pretty( "xxx\'xxx" ) == 'xxx\'xxx' assert pretty( "xxx\"xxx" ) == 'xxx\"xxx' assert pretty( "xxx\"xxx\'xxx" ) == 'xxx"xxx\'xxx' assert pretty( "xxx\nxxx" ) == 'xxx\nxxx' def test_pretty_unicode_str(): assert pretty( 'xxx' ) == 'xxx' assert pretty( 'xxx' ) == 'xxx' assert pretty( 'xxx\'xxx' ) == 'xxx\'xxx' assert pretty( 'xxx"xxx' ) == 'xxx\"xxx' assert pretty( 'xxx\"xxx' ) == 'xxx\"xxx' assert pretty( "xxx'xxx" ) == 'xxx\'xxx' assert pretty( "xxx\'xxx" ) == 'xxx\'xxx' assert pretty( "xxx\"xxx" ) == 'xxx\"xxx' assert pretty( "xxx\"xxx\'xxx" ) == 'xxx"xxx\'xxx' assert pretty( "xxx\nxxx" ) == 'xxx\nxxx' def test_upretty_greek(): assert upretty( oo ) == '∞' assert upretty( Symbol('alpha^+_1') ) == 'α⁺₁' assert upretty( Symbol('beta') ) == 'β' assert upretty(Symbol('lambda')) == 'λ' def test_upretty_multiindex(): assert upretty( Symbol('beta12') ) == 'β₁₂' assert upretty( Symbol('Y00') ) == 'Y₀₀' assert upretty( Symbol('Y_00') ) == 'Y₀₀' assert upretty( Symbol('F^+-') ) == 'F⁺⁻' def test_upretty_sub_super(): assert upretty( Symbol('beta_1_2') ) == 'β₁ ₂' assert upretty( Symbol('beta^1^2') ) == 'β¹ ²' assert upretty( Symbol('beta_1^2') ) == 'β²₁' assert upretty( Symbol('beta_10_20') ) == 'β₁₀ ₂₀' assert upretty( Symbol('beta_ax_gamma^i') ) == 'βⁱₐₓ ᵧ' assert upretty( Symbol("F^1^2_3_4") ) == 'F¹ ²₃ ₄' assert upretty( Symbol("F_1_2^3^4") ) == 'F³ ⁴₁ ₂' assert upretty( Symbol("F_1_2_3_4") ) == 'F₁ ₂ ₃ ₄' assert upretty( Symbol("F^1^2^3^4") ) == 'F¹ ² ³ ⁴' def test_upretty_subs_missing_in_24(): assert upretty( Symbol('F_beta') ) == 'Fᵦ' assert upretty( Symbol('F_gamma') ) == 'Fᵧ' assert upretty( Symbol('F_rho') ) == 'Fᵨ' assert upretty( Symbol('F_phi') ) == 'Fᵩ' assert upretty( Symbol('F_chi') ) == 'Fᵪ' assert upretty( Symbol('F_a') ) == 'Fₐ' assert upretty( Symbol('F_e') ) == 'Fₑ' assert upretty( Symbol('F_i') ) == 'Fᵢ' assert upretty( Symbol('F_o') ) == 'Fₒ' assert upretty( Symbol('F_u') ) == 'Fᵤ' assert upretty( Symbol('F_r') ) == 'Fᵣ' assert upretty( Symbol('F_v') ) == 'Fᵥ' assert upretty( Symbol('F_x') ) == 'Fₓ' def test_missing_in_2X_issue_9047(): assert upretty( Symbol('F_h') ) == 'Fₕ' assert upretty( Symbol('F_k') ) == 'Fₖ' assert upretty( Symbol('F_l') ) == 'Fₗ' assert upretty( Symbol('F_m') ) == 'Fₘ' assert upretty( Symbol('F_n') ) == 'Fₙ' assert upretty( Symbol('F_p') ) == 'Fₚ' assert upretty( Symbol('F_s') ) == 'Fₛ' assert upretty( Symbol('F_t') ) == 'Fₜ' def test_upretty_modifiers(): # Accents assert upretty( Symbol('Fmathring') ) == 'F̊' assert upretty( Symbol('Fddddot') ) == 'F⃜' assert upretty( Symbol('Fdddot') ) == 'F⃛' assert upretty( Symbol('Fddot') ) == 'F̈' assert upretty( Symbol('Fdot') ) == 'Ḟ' assert upretty( Symbol('Fcheck') ) == 'F̌' assert upretty( Symbol('Fbreve') ) == 'F̆' assert upretty( Symbol('Facute') ) == 'F́' assert upretty( Symbol('Fgrave') ) == 'F̀' assert upretty( Symbol('Ftilde') ) == 'F̃' assert upretty( Symbol('Fhat') ) == 'F̂' assert upretty( Symbol('Fbar') ) == 'F̅' assert upretty( Symbol('Fvec') ) == 'F⃗' assert upretty( Symbol('Fprime') ) == 'F′' assert upretty( Symbol('Fprm') ) == 'F′' # No faces are actually implemented, but test to make sure the modifiers are stripped assert upretty( Symbol('Fbold') ) == 'Fbold' assert upretty( Symbol('Fbm') ) == 'Fbm' assert upretty( Symbol('Fcal') ) == 'Fcal' assert upretty( Symbol('Fscr') ) == 'Fscr' assert upretty( Symbol('Ffrak') ) == 'Ffrak' # Brackets assert upretty( Symbol('Fnorm') ) == '‖F‖' assert upretty( Symbol('Favg') ) == '⟨F⟩' assert upretty( Symbol('Fabs') ) == '|F|' assert upretty( Symbol('Fmag') ) == '|F|' # Combinations assert upretty( Symbol('xvecdot') ) == 'x⃗̇' assert upretty( Symbol('xDotVec') ) == 'ẋ⃗' assert upretty( Symbol('xHATNorm') ) == '‖x̂‖' assert upretty( Symbol('xMathring_yCheckPRM__zbreveAbs') ) == 'x̊_y̌′__|z̆|' assert upretty( Symbol('alphadothat_nVECDOT__tTildePrime') ) == 'α̇̂_n⃗̇__t̃′' assert upretty( Symbol('x_dot') ) == 'x_dot' assert upretty( Symbol('x__dot') ) == 'x__dot' def test_pretty_Cycle(): from sympy.combinatorics.permutations import Cycle assert pretty(Cycle(1, 2)) == '(1 2)' assert pretty(Cycle(2)) == '(2)' assert pretty(Cycle(1, 3)(4, 5)) == '(1 3)(4 5)' assert pretty(Cycle()) == '()' def test_pretty_Permutation(): from sympy.combinatorics.permutations import Permutation p1 = Permutation(1, 2)(3, 4) assert xpretty(p1, perm_cyclic=True, use_unicode=True) == "(1 2)(3 4)" assert xpretty(p1, perm_cyclic=True, use_unicode=False) == "(1 2)(3 4)" assert xpretty(p1, perm_cyclic=False, use_unicode=True) == \ '⎛0 1 2 3 4⎞\n'\ '⎝0 2 1 4 3⎠' assert xpretty(p1, perm_cyclic=False, use_unicode=False) == \ "/0 1 2 3 4\\\n"\ "\\0 2 1 4 3/" with warns_deprecated_sympy(): old_print_cyclic = Permutation.print_cyclic Permutation.print_cyclic = False assert xpretty(p1, use_unicode=True) == \ '⎛0 1 2 3 4⎞\n'\ '⎝0 2 1 4 3⎠' assert xpretty(p1, use_unicode=False) == \ "/0 1 2 3 4\\\n"\ "\\0 2 1 4 3/" Permutation.print_cyclic = old_print_cyclic def test_pretty_basic(): assert pretty( -Rational(1)/2 ) == '-1/2' assert pretty( -Rational(13)/22 ) == \ """\ -13 \n\ ----\n\ 22 \ """ expr = oo ascii_str = \ """\ oo\ """ ucode_str = \ """\ ∞\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x**2) ascii_str = \ """\ 2\n\ x \ """ ucode_str = \ """\ 2\n\ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 1/x ascii_str = \ """\ 1\n\ -\n\ x\ """ ucode_str = \ """\ 1\n\ ─\n\ x\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # not the same as 1/x expr = x**-1.0 ascii_str = \ """\ -1.0\n\ x \ """ ucode_str = \ """\ -1.0\n\ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # see issue #2860 expr = Pow(S(2), -1.0, evaluate=False) ascii_str = \ """\ -1.0\n\ 2 \ """ ucode_str = \ """\ -1.0\n\ 2 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = y*x**-2 ascii_str = \ """\ y \n\ --\n\ 2\n\ x \ """ ucode_str = \ """\ y \n\ ──\n\ 2\n\ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str #see issue #14033 expr = x**Rational(1, 3) ascii_str = \ """\ 1/3\n\ x \ """ ucode_str = \ """\ 1/3\n\ x \ """ assert xpretty(expr, use_unicode=False, wrap_line=False,\ root_notation = False) == ascii_str assert xpretty(expr, use_unicode=True, wrap_line=False,\ root_notation = False) == ucode_str expr = x**Rational(-5, 2) ascii_str = \ """\ 1 \n\ ----\n\ 5/2\n\ x \ """ ucode_str = \ """\ 1 \n\ ────\n\ 5/2\n\ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (-2)**x ascii_str = \ """\ x\n\ (-2) \ """ ucode_str = \ """\ x\n\ (-2) \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # See issue 4923 expr = Pow(3, 1, evaluate=False) ascii_str = \ """\ 1\n\ 3 \ """ ucode_str = \ """\ 1\n\ 3 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x**2 + x + 1) ascii_str_1 = \ """\ 2\n\ 1 + x + x \ """ ascii_str_2 = \ """\ 2 \n\ x + x + 1\ """ ascii_str_3 = \ """\ 2 \n\ x + 1 + x\ """ ucode_str_1 = \ """\ 2\n\ 1 + x + x \ """ ucode_str_2 = \ """\ 2 \n\ x + x + 1\ """ ucode_str_3 = \ """\ 2 \n\ x + 1 + x\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3] assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3] expr = 1 - x ascii_str_1 = \ """\ 1 - x\ """ ascii_str_2 = \ """\ -x + 1\ """ ucode_str_1 = \ """\ 1 - x\ """ ucode_str_2 = \ """\ -x + 1\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = 1 - 2*x ascii_str_1 = \ """\ 1 - 2*x\ """ ascii_str_2 = \ """\ -2*x + 1\ """ ucode_str_1 = \ """\ 1 - 2⋅x\ """ ucode_str_2 = \ """\ -2⋅x + 1\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = x/y ascii_str = \ """\ x\n\ -\n\ y\ """ ucode_str = \ """\ x\n\ ─\n\ y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -x/y ascii_str = \ """\ -x \n\ ---\n\ y \ """ ucode_str = \ """\ -x \n\ ───\n\ y \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x + 2)/y ascii_str_1 = \ """\ 2 + x\n\ -----\n\ y \ """ ascii_str_2 = \ """\ x + 2\n\ -----\n\ y \ """ ucode_str_1 = \ """\ 2 + x\n\ ─────\n\ y \ """ ucode_str_2 = \ """\ x + 2\n\ ─────\n\ y \ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = (1 + x)*y ascii_str_1 = \ """\ y*(1 + x)\ """ ascii_str_2 = \ """\ (1 + x)*y\ """ ascii_str_3 = \ """\ y*(x + 1)\ """ ucode_str_1 = \ """\ y⋅(1 + x)\ """ ucode_str_2 = \ """\ (1 + x)⋅y\ """ ucode_str_3 = \ """\ y⋅(x + 1)\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3] assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3] # Test for correct placement of the negative sign expr = -5*x/(x + 10) ascii_str_1 = \ """\ -5*x \n\ ------\n\ 10 + x\ """ ascii_str_2 = \ """\ -5*x \n\ ------\n\ x + 10\ """ ucode_str_1 = \ """\ -5⋅x \n\ ──────\n\ 10 + x\ """ ucode_str_2 = \ """\ -5⋅x \n\ ──────\n\ x + 10\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = -S.Half - 3*x ascii_str = \ """\ -3*x - 1/2\ """ ucode_str = \ """\ -3⋅x - 1/2\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = S.Half - 3*x ascii_str = \ """\ 1/2 - 3*x\ """ ucode_str = \ """\ 1/2 - 3⋅x\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -S.Half - 3*x/2 ascii_str = \ """\ 3*x 1\n\ - --- - -\n\ 2 2\ """ ucode_str = \ """\ 3⋅x 1\n\ - ─── - ─\n\ 2 2\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = S.Half - 3*x/2 ascii_str = \ """\ 1 3*x\n\ - - ---\n\ 2 2 \ """ ucode_str = \ """\ 1 3⋅x\n\ ─ - ───\n\ 2 2 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_negative_fractions(): expr = -x/y ascii_str =\ """\ -x \n\ ---\n\ y \ """ ucode_str =\ """\ -x \n\ ───\n\ y \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -x*z/y ascii_str =\ """\ -x*z \n\ -----\n\ y \ """ ucode_str =\ """\ -x⋅z \n\ ─────\n\ y \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = x**2/y ascii_str =\ """\ 2\n\ x \n\ --\n\ y \ """ ucode_str =\ """\ 2\n\ x \n\ ──\n\ y \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -x**2/y ascii_str =\ """\ 2 \n\ -x \n\ ----\n\ y \ """ ucode_str =\ """\ 2 \n\ -x \n\ ────\n\ y \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -x/(y*z) ascii_str =\ """\ -x \n\ ---\n\ y*z\ """ ucode_str =\ """\ -x \n\ ───\n\ y⋅z\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -a/y**2 ascii_str =\ """\ -a \n\ ---\n\ 2\n\ y \ """ ucode_str =\ """\ -a \n\ ───\n\ 2\n\ y \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = y**(-a/b) ascii_str =\ """\ -a \n\ ---\n\ b \n\ y \ """ ucode_str =\ """\ -a \n\ ───\n\ b \n\ y \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -1/y**2 ascii_str =\ """\ -1 \n\ ---\n\ 2\n\ y \ """ ucode_str =\ """\ -1 \n\ ───\n\ 2\n\ y \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -10/b**2 ascii_str =\ """\ -10 \n\ ----\n\ 2 \n\ b \ """ ucode_str =\ """\ -10 \n\ ────\n\ 2 \n\ b \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Rational(-200, 37) ascii_str =\ """\ -200 \n\ -----\n\ 37 \ """ ucode_str =\ """\ -200 \n\ ─────\n\ 37 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_Mul(): expr = Mul(0, 1, evaluate=False) assert pretty(expr) == "0*1" assert upretty(expr) == "0⋅1" expr = Mul(1, 0, evaluate=False) assert pretty(expr) == "1*0" assert upretty(expr) == "1⋅0" expr = Mul(1, 1, evaluate=False) assert pretty(expr) == "1*1" assert upretty(expr) == "1⋅1" expr = Mul(1, 1, 1, evaluate=False) assert pretty(expr) == "1*1*1" assert upretty(expr) == "1⋅1⋅1" expr = Mul(1, 2, evaluate=False) assert pretty(expr) == "1*2" assert upretty(expr) == "1⋅2" expr = Add(0, 1, evaluate=False) assert pretty(expr) == "0 + 1" assert upretty(expr) == "0 + 1" expr = Mul(1, 1, 2, evaluate=False) assert pretty(expr) == "1*1*2" assert upretty(expr) == "1⋅1⋅2" expr = Add(0, 0, 1, evaluate=False) assert pretty(expr) == "0 + 0 + 1" assert upretty(expr) == "0 + 0 + 1" expr = Mul(1, -1, evaluate=False) assert pretty(expr) == "1*-1" assert upretty(expr) == "1⋅-1" expr = Mul(1.0, x, evaluate=False) assert pretty(expr) == "1.0*x" assert upretty(expr) == "1.0⋅x" expr = Mul(1, 1, 2, 3, x, evaluate=False) assert pretty(expr) == "1*1*2*3*x" assert upretty(expr) == "1⋅1⋅2⋅3⋅x" expr = Mul(-1, 1, evaluate=False) assert pretty(expr) == "-1*1" assert upretty(expr) == "-1⋅1" expr = Mul(4, 3, 2, 1, 0, y, x, evaluate=False) assert pretty(expr) == "4*3*2*1*0*y*x" assert upretty(expr) == "4⋅3⋅2⋅1⋅0⋅y⋅x" expr = Mul(4, 3, 2, 1+z, 0, y, x, evaluate=False) assert pretty(expr) == "4*3*2*(z + 1)*0*y*x" assert upretty(expr) == "4⋅3⋅2⋅(z + 1)⋅0⋅y⋅x" expr = Mul(Rational(2, 3), Rational(5, 7), evaluate=False) assert pretty(expr) == "2/3*5/7" assert upretty(expr) == "2/3⋅5/7" expr = Mul(x + y, Rational(1, 2), evaluate=False) assert pretty(expr) == "(x + y)*1/2" assert upretty(expr) == "(x + y)⋅1/2" expr = Mul(Rational(1, 2), x + y, evaluate=False) assert pretty(expr) == "x + y\n-----\n 2 " assert upretty(expr) == "x + y\n─────\n 2 " expr = Mul(S.One, x + y, evaluate=False) assert pretty(expr) == "1*(x + y)" assert upretty(expr) == "1⋅(x + y)" expr = Mul(x - y, S.One, evaluate=False) assert pretty(expr) == "(x - y)*1" assert upretty(expr) == "(x - y)⋅1" expr = Mul(Rational(1, 2), x - y, S.One, x + y, evaluate=False) assert pretty(expr) == "1/2*(x - y)*1*(x + y)" assert upretty(expr) == "1/2⋅(x - y)⋅1⋅(x + y)" expr = Mul(x + y, Rational(3, 4), S.One, y - z, evaluate=False) assert pretty(expr) == "(x + y)*3/4*1*(y - z)" assert upretty(expr) == "(x + y)⋅3/4⋅1⋅(y - z)" expr = Mul(x + y, Rational(1, 1), Rational(3, 4), Rational(5, 6),evaluate=False) assert pretty(expr) == "(x + y)*1*3/4*5/6" assert upretty(expr) == "(x + y)⋅1⋅3/4⋅5/6" expr = Mul(Rational(3, 4), x + y, S.One, y - z, evaluate=False) assert pretty(expr) == "3/4*(x + y)*1*(y - z)" assert upretty(expr) == "3/4⋅(x + y)⋅1⋅(y - z)" def test_issue_5524(): assert pretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \ """\ 2 / ___ \\\n\ - (5 - y) + (x - 5)*\\-x - 2*\\/ 2 + 5/\ """ assert upretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \ """\ 2 \n\ - (5 - y) + (x - 5)⋅(-x - 2⋅√2 + 5)\ """ def test_pretty_ordering(): assert pretty(x**2 + x + 1, order='lex') == \ """\ 2 \n\ x + x + 1\ """ assert pretty(x**2 + x + 1, order='rev-lex') == \ """\ 2\n\ 1 + x + x \ """ assert pretty(1 - x, order='lex') == '-x + 1' assert pretty(1 - x, order='rev-lex') == '1 - x' assert pretty(1 - 2*x, order='lex') == '-2*x + 1' assert pretty(1 - 2*x, order='rev-lex') == '1 - 2*x' f = 2*x**4 + y**2 - x**2 + y**3 assert pretty(f, order=None) == \ """\ 4 2 3 2\n\ 2*x - x + y + y \ """ assert pretty(f, order='lex') == \ """\ 4 2 3 2\n\ 2*x - x + y + y \ """ assert pretty(f, order='rev-lex') == \ """\ 2 3 2 4\n\ y + y - x + 2*x \ """ expr = x - x**3/6 + x**5/120 + O(x**6) ascii_str = \ """\ 3 5 \n\ x x / 6\\\n\ x - -- + --- + O\\x /\n\ 6 120 \ """ ucode_str = \ """\ 3 5 \n\ x x ⎛ 6⎞\n\ x - ── + ─── + O⎝x ⎠\n\ 6 120 \ """ assert pretty(expr, order=None) == ascii_str assert upretty(expr, order=None) == ucode_str assert pretty(expr, order='lex') == ascii_str assert upretty(expr, order='lex') == ucode_str assert pretty(expr, order='rev-lex') == ascii_str assert upretty(expr, order='rev-lex') == ucode_str def test_EulerGamma(): assert pretty(EulerGamma) == str(EulerGamma) == "EulerGamma" assert upretty(EulerGamma) == "γ" def test_GoldenRatio(): assert pretty(GoldenRatio) == str(GoldenRatio) == "GoldenRatio" assert upretty(GoldenRatio) == "φ" def test_Catalan(): assert pretty(Catalan) == upretty(Catalan) == "G" def test_pretty_relational(): expr = Eq(x, y) ascii_str = \ """\ x = y\ """ ucode_str = \ """\ x = y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lt(x, y) ascii_str = \ """\ x < y\ """ ucode_str = \ """\ x < y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Gt(x, y) ascii_str = \ """\ x > y\ """ ucode_str = \ """\ x > y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Le(x, y) ascii_str = \ """\ x <= y\ """ ucode_str = \ """\ x ≤ y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Ge(x, y) ascii_str = \ """\ x >= y\ """ ucode_str = \ """\ x ≥ y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Ne(x/(y + 1), y**2) ascii_str_1 = \ """\ x 2\n\ ----- != y \n\ 1 + y \ """ ascii_str_2 = \ """\ x 2\n\ ----- != y \n\ y + 1 \ """ ucode_str_1 = \ """\ x 2\n\ ───── ≠ y \n\ 1 + y \ """ ucode_str_2 = \ """\ x 2\n\ ───── ≠ y \n\ y + 1 \ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] def test_Assignment(): expr = Assignment(x, y) ascii_str = \ """\ x := y\ """ ucode_str = \ """\ x := y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_AugmentedAssignment(): expr = AddAugmentedAssignment(x, y) ascii_str = \ """\ x += y\ """ ucode_str = \ """\ x += y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = SubAugmentedAssignment(x, y) ascii_str = \ """\ x -= y\ """ ucode_str = \ """\ x -= y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = MulAugmentedAssignment(x, y) ascii_str = \ """\ x *= y\ """ ucode_str = \ """\ x *= y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = DivAugmentedAssignment(x, y) ascii_str = \ """\ x /= y\ """ ucode_str = \ """\ x /= y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = ModAugmentedAssignment(x, y) ascii_str = \ """\ x %= y\ """ ucode_str = \ """\ x %= y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_rational(): expr = y*x**-2 ascii_str = \ """\ y \n\ --\n\ 2\n\ x \ """ ucode_str = \ """\ y \n\ ──\n\ 2\n\ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = y**Rational(3, 2) * x**Rational(-5, 2) ascii_str = \ """\ 3/2\n\ y \n\ ----\n\ 5/2\n\ x \ """ ucode_str = \ """\ 3/2\n\ y \n\ ────\n\ 5/2\n\ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = sin(x)**3/tan(x)**2 ascii_str = \ """\ 3 \n\ sin (x)\n\ -------\n\ 2 \n\ tan (x)\ """ ucode_str = \ """\ 3 \n\ sin (x)\n\ ───────\n\ 2 \n\ tan (x)\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str @_both_exp_pow def test_pretty_functions(): """Tests for Abs, conjugate, exp, function braces, and factorial.""" expr = (2*x + exp(x)) ascii_str_1 = \ """\ x\n\ 2*x + e \ """ ascii_str_2 = \ """\ x \n\ e + 2*x\ """ ucode_str_1 = \ """\ x\n\ 2⋅x + ℯ \ """ ucode_str_2 = \ """\ x \n\ ℯ + 2⋅x\ """ ucode_str_3 = \ """\ x \n\ ℯ + 2⋅x\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3] expr = Abs(x) ascii_str = \ """\ |x|\ """ ucode_str = \ """\ │x│\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Abs(x/(x**2 + 1)) ascii_str_1 = \ """\ | x |\n\ |------|\n\ | 2|\n\ |1 + x |\ """ ascii_str_2 = \ """\ | x |\n\ |------|\n\ | 2 |\n\ |x + 1|\ """ ucode_str_1 = \ """\ │ x │\n\ │──────│\n\ │ 2│\n\ │1 + x │\ """ ucode_str_2 = \ """\ │ x │\n\ │──────│\n\ │ 2 │\n\ │x + 1│\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Abs(1 / (y - Abs(x))) ascii_str = \ """\ 1 \n\ ---------\n\ |y - |x||\ """ ucode_str = \ """\ 1 \n\ ─────────\n\ │y - │x││\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str n = Symbol('n', integer=True) expr = factorial(n) ascii_str = \ """\ n!\ """ ucode_str = \ """\ n!\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial(2*n) ascii_str = \ """\ (2*n)!\ """ ucode_str = \ """\ (2⋅n)!\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial(factorial(factorial(n))) ascii_str = \ """\ ((n!)!)!\ """ ucode_str = \ """\ ((n!)!)!\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial(n + 1) ascii_str_1 = \ """\ (1 + n)!\ """ ascii_str_2 = \ """\ (n + 1)!\ """ ucode_str_1 = \ """\ (1 + n)!\ """ ucode_str_2 = \ """\ (n + 1)!\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = subfactorial(n) ascii_str = \ """\ !n\ """ ucode_str = \ """\ !n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = subfactorial(2*n) ascii_str = \ """\ !(2*n)\ """ ucode_str = \ """\ !(2⋅n)\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str n = Symbol('n', integer=True) expr = factorial2(n) ascii_str = \ """\ n!!\ """ ucode_str = \ """\ n!!\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial2(2*n) ascii_str = \ """\ (2*n)!!\ """ ucode_str = \ """\ (2⋅n)!!\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial2(factorial2(factorial2(n))) ascii_str = \ """\ ((n!!)!!)!!\ """ ucode_str = \ """\ ((n!!)!!)!!\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial2(n + 1) ascii_str_1 = \ """\ (1 + n)!!\ """ ascii_str_2 = \ """\ (n + 1)!!\ """ ucode_str_1 = \ """\ (1 + n)!!\ """ ucode_str_2 = \ """\ (n + 1)!!\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = 2*binomial(n, k) ascii_str = \ """\ /n\\\n\ 2*| |\n\ \\k/\ """ ucode_str = \ """\ ⎛n⎞\n\ 2⋅⎜ ⎟\n\ ⎝k⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2*binomial(2*n, k) ascii_str = \ """\ /2*n\\\n\ 2*| |\n\ \\ k /\ """ ucode_str = \ """\ ⎛2⋅n⎞\n\ 2⋅⎜ ⎟\n\ ⎝ k ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2*binomial(n**2, k) ascii_str = \ """\ / 2\\\n\ |n |\n\ 2*| |\n\ \\k /\ """ ucode_str = \ """\ ⎛ 2⎞\n\ ⎜n ⎟\n\ 2⋅⎜ ⎟\n\ ⎝k ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = catalan(n) ascii_str = \ """\ C \n\ n\ """ ucode_str = \ """\ C \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = catalan(n) ascii_str = \ """\ C \n\ n\ """ ucode_str = \ """\ C \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = bell(n) ascii_str = \ """\ B \n\ n\ """ ucode_str = \ """\ B \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = bernoulli(n) ascii_str = \ """\ B \n\ n\ """ ucode_str = \ """\ B \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = bernoulli(n, x) ascii_str = \ """\ B (x)\n\ n \ """ ucode_str = \ """\ B (x)\n\ n \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = fibonacci(n) ascii_str = \ """\ F \n\ n\ """ ucode_str = \ """\ F \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = lucas(n) ascii_str = \ """\ L \n\ n\ """ ucode_str = \ """\ L \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = tribonacci(n) ascii_str = \ """\ T \n\ n\ """ ucode_str = \ """\ T \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = stieltjes(n) ascii_str = \ """\ stieltjes \n\ n\ """ ucode_str = \ """\ γ \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = stieltjes(n, x) ascii_str = \ """\ stieltjes (x)\n\ n \ """ ucode_str = \ """\ γ (x)\n\ n \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = mathieuc(x, y, z) ascii_str = 'C(x, y, z)' ucode_str = 'C(x, y, z)' assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = mathieus(x, y, z) ascii_str = 'S(x, y, z)' ucode_str = 'S(x, y, z)' assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = mathieucprime(x, y, z) ascii_str = "C'(x, y, z)" ucode_str = "C'(x, y, z)" assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = mathieusprime(x, y, z) ascii_str = "S'(x, y, z)" ucode_str = "S'(x, y, z)" assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = conjugate(x) ascii_str = \ """\ _\n\ x\ """ ucode_str = \ """\ _\n\ x\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str f = Function('f') expr = conjugate(f(x + 1)) ascii_str_1 = \ """\ ________\n\ f(1 + x)\ """ ascii_str_2 = \ """\ ________\n\ f(x + 1)\ """ ucode_str_1 = \ """\ ________\n\ f(1 + x)\ """ ucode_str_2 = \ """\ ________\n\ f(x + 1)\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = f(x) ascii_str = \ """\ f(x)\ """ ucode_str = \ """\ f(x)\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = f(x, y) ascii_str = \ """\ f(x, y)\ """ ucode_str = \ """\ f(x, y)\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = f(x/(y + 1), y) ascii_str_1 = \ """\ / x \\\n\ f|-----, y|\n\ \\1 + y /\ """ ascii_str_2 = \ """\ / x \\\n\ f|-----, y|\n\ \\y + 1 /\ """ ucode_str_1 = \ """\ ⎛ x ⎞\n\ f⎜─────, y⎟\n\ ⎝1 + y ⎠\ """ ucode_str_2 = \ """\ ⎛ x ⎞\n\ f⎜─────, y⎟\n\ ⎝y + 1 ⎠\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = f(x**x**x**x**x**x) ascii_str = \ """\ / / / / / x\\\\\\\\\\ | | | | \\x /|||| | | | \\x /||| | | \\x /|| | \\x /| f\\x /\ """ ucode_str = \ """\ ⎛ ⎛ ⎛ ⎛ ⎛ x⎞⎞⎞⎞⎞ ⎜ ⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟⎟ ⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟ ⎜ ⎜ ⎝x ⎠⎟⎟ ⎜ ⎝x ⎠⎟ f⎝x ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = sin(x)**2 ascii_str = \ """\ 2 \n\ sin (x)\ """ ucode_str = \ """\ 2 \n\ sin (x)\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = conjugate(a + b*I) ascii_str = \ """\ _ _\n\ a - I*b\ """ ucode_str = \ """\ _ _\n\ a - ⅈ⋅b\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = conjugate(exp(a + b*I)) ascii_str = \ """\ _ _\n\ a - I*b\n\ e \ """ ucode_str = \ """\ _ _\n\ a - ⅈ⋅b\n\ ℯ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = conjugate( f(1 + conjugate(f(x))) ) ascii_str_1 = \ """\ ___________\n\ / ____\\\n\ f\\1 + f(x)/\ """ ascii_str_2 = \ """\ ___________\n\ /____ \\\n\ f\\f(x) + 1/\ """ ucode_str_1 = \ """\ ___________\n\ ⎛ ____⎞\n\ f⎝1 + f(x)⎠\ """ ucode_str_2 = \ """\ ___________\n\ ⎛____ ⎞\n\ f⎝f(x) + 1⎠\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = f(x/(y + 1), y) ascii_str_1 = \ """\ / x \\\n\ f|-----, y|\n\ \\1 + y /\ """ ascii_str_2 = \ """\ / x \\\n\ f|-----, y|\n\ \\y + 1 /\ """ ucode_str_1 = \ """\ ⎛ x ⎞\n\ f⎜─────, y⎟\n\ ⎝1 + y ⎠\ """ ucode_str_2 = \ """\ ⎛ x ⎞\n\ f⎜─────, y⎟\n\ ⎝y + 1 ⎠\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = floor(1 / (y - floor(x))) ascii_str = \ """\ / 1 \\\n\ floor|------------|\n\ \\y - floor(x)/\ """ ucode_str = \ """\ ⎢ 1 ⎥\n\ ⎢───────⎥\n\ ⎣y - ⌊x⌋⎦\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = ceiling(1 / (y - ceiling(x))) ascii_str = \ """\ / 1 \\\n\ ceiling|--------------|\n\ \\y - ceiling(x)/\ """ ucode_str = \ """\ ⎡ 1 ⎤\n\ ⎢───────⎥\n\ ⎢y - ⌈x⌉⎥\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = euler(n) ascii_str = \ """\ E \n\ n\ """ ucode_str = \ """\ E \n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = euler(1/(1 + 1/(1 + 1/n))) ascii_str = \ """\ E \n\ 1 \n\ ---------\n\ 1 \n\ 1 + -----\n\ 1\n\ 1 + -\n\ n\ """ ucode_str = \ """\ E \n\ 1 \n\ ─────────\n\ 1 \n\ 1 + ─────\n\ 1\n\ 1 + ─\n\ n\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = euler(n, x) ascii_str = \ """\ E (x)\n\ n \ """ ucode_str = \ """\ E (x)\n\ n \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = euler(n, x/2) ascii_str = \ """\ /x\\\n\ E |-|\n\ n\\2/\ """ ucode_str = \ """\ ⎛x⎞\n\ E ⎜─⎟\n\ n⎝2⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_sqrt(): expr = sqrt(2) ascii_str = \ """\ ___\n\ \\/ 2 \ """ ucode_str = \ "√2" assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2**Rational(1, 3) ascii_str = \ """\ 3 ___\n\ \\/ 2 \ """ ucode_str = \ """\ 3 ___\n\ ╲╱ 2 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2**Rational(1, 1000) ascii_str = \ """\ 1000___\n\ \\/ 2 \ """ ucode_str = \ """\ 1000___\n\ ╲╱ 2 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = sqrt(x**2 + 1) ascii_str = \ """\ ________\n\ / 2 \n\ \\/ x + 1 \ """ ucode_str = \ """\ ________\n\ ╱ 2 \n\ ╲╱ x + 1 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (1 + sqrt(5))**Rational(1, 3) ascii_str = \ """\ ___________\n\ 3 / ___ \n\ \\/ 1 + \\/ 5 \ """ ucode_str = \ """\ 3 ________\n\ ╲╱ 1 + √5 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2**(1/x) ascii_str = \ """\ x ___\n\ \\/ 2 \ """ ucode_str = \ """\ x ___\n\ ╲╱ 2 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = sqrt(2 + pi) ascii_str = \ """\ ________\n\ \\/ 2 + pi \ """ ucode_str = \ """\ _______\n\ ╲╱ 2 + π \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (2 + ( 1 + x**2)/(2 + x))**Rational(1, 4) + (1 + x**Rational(1, 1000))/sqrt(3 + x**2) ascii_str = \ """\ ____________ \n\ / 2 1000___ \n\ / x + 1 \\/ x + 1\n\ 4 / 2 + ------ + -----------\n\ \\/ x + 2 ________\n\ / 2 \n\ \\/ x + 3 \ """ ucode_str = \ """\ ____________ \n\ ╱ 2 1000___ \n\ ╱ x + 1 ╲╱ x + 1\n\ 4 ╱ 2 + ────── + ───────────\n\ ╲╱ x + 2 ________\n\ ╱ 2 \n\ ╲╱ x + 3 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_sqrt_char_knob(): # See PR #9234. expr = sqrt(2) ucode_str1 = \ """\ ___\n\ ╲╱ 2 \ """ ucode_str2 = \ "√2" assert xpretty(expr, use_unicode=True, use_unicode_sqrt_char=False) == ucode_str1 assert xpretty(expr, use_unicode=True, use_unicode_sqrt_char=True) == ucode_str2 def test_pretty_sqrt_longsymbol_no_sqrt_char(): # Do not use unicode sqrt char for long symbols (see PR #9234). expr = sqrt(Symbol('C1')) ucode_str = \ """\ ____\n\ ╲╱ C₁ \ """ assert upretty(expr) == ucode_str def test_pretty_KroneckerDelta(): x, y = symbols("x, y") expr = KroneckerDelta(x, y) ascii_str = \ """\ d \n\ x,y\ """ ucode_str = \ """\ δ \n\ x,y\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_product(): n, m, k, l = symbols('n m k l') f = symbols('f', cls=Function) expr = Product(f((n/3)**2), (n, k**2, l)) unicode_str = \ """\ l \n\ ─┬──────┬─ \n\ │ │ ⎛ 2⎞\n\ │ │ ⎜n ⎟\n\ │ │ f⎜──⎟\n\ │ │ ⎝9 ⎠\n\ │ │ \n\ 2 \n\ n = k """ ascii_str = \ """\ l \n\ __________ \n\ | | / 2\\\n\ | | |n |\n\ | | f|--|\n\ | | \\9 /\n\ | | \n\ 2 \n\ n = k """ expr = Product(f((n/3)**2), (n, k**2, l), (l, 1, m)) unicode_str = \ """\ m l \n\ ─┬──────┬─ ─┬──────┬─ \n\ │ │ │ │ ⎛ 2⎞\n\ │ │ │ │ ⎜n ⎟\n\ │ │ │ │ f⎜──⎟\n\ │ │ │ │ ⎝9 ⎠\n\ │ │ │ │ \n\ l = 1 2 \n\ n = k """ ascii_str = \ """\ m l \n\ __________ __________ \n\ | | | | / 2\\\n\ | | | | |n |\n\ | | | | f|--|\n\ | | | | \\9 /\n\ | | | | \n\ l = 1 2 \n\ n = k """ assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str def test_pretty_Lambda(): # S.IdentityFunction is a special case expr = Lambda(y, y) assert pretty(expr) == "x -> x" assert upretty(expr) == "x ↦ x" expr = Lambda(x, x+1) assert pretty(expr) == "x -> x + 1" assert upretty(expr) == "x ↦ x + 1" expr = Lambda(x, x**2) ascii_str = \ """\ 2\n\ x -> x \ """ ucode_str = \ """\ 2\n\ x ↦ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lambda(x, x**2)**2 ascii_str = \ """\ 2 / 2\\ \n\ \\x -> x / \ """ ucode_str = \ """\ 2 ⎛ 2⎞ \n\ ⎝x ↦ x ⎠ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lambda((x, y), x) ascii_str = "(x, y) -> x" ucode_str = "(x, y) ↦ x" assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lambda((x, y), x**2) ascii_str = \ """\ 2\n\ (x, y) -> x \ """ ucode_str = \ """\ 2\n\ (x, y) ↦ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lambda(((x, y),), x**2) ascii_str = \ """\ 2\n\ ((x, y),) -> x \ """ ucode_str = \ """\ 2\n\ ((x, y),) ↦ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_TransferFunction(): tf1 = TransferFunction(s - 1, s + 1, s) assert upretty(tf1) == "s - 1\n─────\ns + 1" tf2 = TransferFunction(2*s + 1, 3 - p, s) assert upretty(tf2) == "2⋅s + 1\n───────\n 3 - p " tf3 = TransferFunction(p, p + 1, p) assert upretty(tf3) == " p \n─────\np + 1" def test_pretty_Series(): tf1 = TransferFunction(x + y, x - 2*y, y) tf2 = TransferFunction(x - y, x + y, y) tf3 = TransferFunction(x**2 + y, y - x, y) tf4 = TransferFunction(2, 3, y) tfm1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]]) tfm2 = TransferFunctionMatrix([[tf3], [-tf4]]) tfm3 = TransferFunctionMatrix([[tf1, -tf2, -tf3], [tf3, -tf4, tf2]]) tfm4 = TransferFunctionMatrix([[tf1, tf2], [tf3, -tf4], [-tf2, -tf1]]) tfm5 = TransferFunctionMatrix([[-tf2, -tf1], [tf4, -tf3], [tf1, tf2]]) expected1 = \ """\ ⎛ 2 ⎞\n\ ⎛ x + y ⎞ ⎜x + y⎟\n\ ⎜───────⎟⋅⎜──────⎟\n\ ⎝x - 2⋅y⎠ ⎝-x + y⎠\ """ expected2 = \ """\ ⎛-x + y⎞ ⎛ -x - y⎞\n\ ⎜──────⎟⋅⎜───────⎟\n\ ⎝x + y ⎠ ⎝x - 2⋅y⎠\ """ expected3 = \ """\ ⎛ 2 ⎞ \n\ ⎜x + y⎟ ⎛ x + y ⎞ ⎛ -x - y x - y⎞\n\ ⎜──────⎟⋅⎜───────⎟⋅⎜─────── + ─────⎟\n\ ⎝-x + y⎠ ⎝x - 2⋅y⎠ ⎝x - 2⋅y x + y⎠\ """ expected4 = \ """\ ⎛ 2 ⎞\n\ ⎛ x + y x - y⎞ ⎜x - y x + y⎟\n\ ⎜─────── + ─────⎟⋅⎜───── + ──────⎟\n\ ⎝x - 2⋅y x + y⎠ ⎝x + y -x + y⎠\ """ expected5 = \ """\ ⎡ x + y x - y⎤ ⎡ 2 ⎤ \n\ ⎢─────── ─────⎥ ⎢x + y⎥ \n\ ⎢x - 2⋅y x + y⎥ ⎢──────⎥ \n\ ⎢ ⎥ ⎢-x + y⎥ \n\ ⎢ 2 ⎥ ⋅⎢ ⎥ \n\ ⎢x + y 2 ⎥ ⎢ -2 ⎥ \n\ ⎢────── ─ ⎥ ⎢ ─── ⎥ \n\ ⎣-x + y 3 ⎦τ ⎣ 3 ⎦τ\ """ expected6 = \ """\ ⎛⎡ x + y x - y ⎤ ⎡ x - y x + y ⎤ ⎞\n\ ⎜⎢─────── ───── ⎥ ⎢ ───── ───────⎥ ⎟\n\ ⎡ x + y x - y⎤ ⎡ 2 ⎤ ⎜⎢x - 2⋅y x + y ⎥ ⎢ x + y x - 2⋅y⎥ ⎟\n\ ⎢─────── ─────⎥ ⎢ x + y -x + y - x - y⎥ ⎜⎢ ⎥ ⎢ ⎥ ⎟\n\ ⎢x - 2⋅y x + y⎥ ⎢─────── ────── ────────⎥ ⎜⎢ 2 ⎥ ⎢ 2 ⎥ ⎟\n\ ⎢ ⎥ ⎢x - 2⋅y x + y -x + y ⎥ ⎜⎢x + y -2 ⎥ ⎢ -2 x + y ⎥ ⎟\n\ ⎢ 2 ⎥ ⋅⎢ ⎥ ⋅⎜⎢────── ─── ⎥ + ⎢ ─── ────── ⎥ ⎟\n\ ⎢x + y 2 ⎥ ⎢ 2 ⎥ ⎜⎢-x + y 3 ⎥ ⎢ 3 -x + y ⎥ ⎟\n\ ⎢────── ─ ⎥ ⎢x + y -2 x - y ⎥ ⎜⎢ ⎥ ⎢ ⎥ ⎟\n\ ⎣-x + y 3 ⎦τ ⎢────── ─── ───── ⎥ ⎜⎢-x + y -x - y⎥ ⎢ -x - y -x + y ⎥ ⎟\n\ ⎣-x + y 3 x + y ⎦τ ⎜⎢────── ───────⎥ ⎢─────── ────── ⎥ ⎟\n\ ⎝⎣x + y x - 2⋅y⎦τ ⎣x - 2⋅y x + y ⎦τ⎠\ """ assert upretty(Series(tf1, tf3)) == expected1 assert upretty(Series(-tf2, -tf1)) == expected2 assert upretty(Series(tf3, tf1, Parallel(-tf1, tf2))) == expected3 assert upretty(Series(Parallel(tf1, tf2), Parallel(tf2, tf3))) == expected4 assert upretty(MIMOSeries(tfm2, tfm1)) == expected5 assert upretty(MIMOSeries(MIMOParallel(tfm4, -tfm5), tfm3, tfm1)) == expected6 def test_pretty_Parallel(): tf1 = TransferFunction(x + y, x - 2*y, y) tf2 = TransferFunction(x - y, x + y, y) tf3 = TransferFunction(x**2 + y, y - x, y) tf4 = TransferFunction(y**2 - x, x**3 + x, y) tfm1 = TransferFunctionMatrix([[tf1, tf2], [tf3, -tf4], [-tf2, -tf1]]) tfm2 = TransferFunctionMatrix([[-tf2, -tf1], [tf4, -tf3], [tf1, tf2]]) tfm3 = TransferFunctionMatrix([[-tf1, tf2], [-tf3, tf4], [tf2, tf1]]) tfm4 = TransferFunctionMatrix([[-tf1, -tf2], [-tf3, -tf4]]) expected1 = \ """\ x + y x - y\n\ ─────── + ─────\n\ x - 2⋅y x + y\ """ expected2 = \ """\ -x + y -x - y\n\ ────── + ───────\n\ x + y x - 2⋅y\ """ expected3 = \ """\ 2 \n\ x + y x + y ⎛ -x - y⎞ ⎛x - y⎞\n\ ────── + ─────── + ⎜───────⎟⋅⎜─────⎟\n\ -x + y x - 2⋅y ⎝x - 2⋅y⎠ ⎝x + y⎠\ """ expected4 = \ """\ ⎛ 2 ⎞\n\ ⎛ x + y ⎞ ⎛x - y⎞ ⎛x - y⎞ ⎜x + y⎟\n\ ⎜───────⎟⋅⎜─────⎟ + ⎜─────⎟⋅⎜──────⎟\n\ ⎝x - 2⋅y⎠ ⎝x + y⎠ ⎝x + y⎠ ⎝-x + y⎠\ """ expected5 = \ """\ ⎡ x + y -x + y ⎤ ⎡ x - y x + y ⎤ ⎡ x + y x - y ⎤ \n\ ⎢─────── ────── ⎥ ⎢ ───── ───────⎥ ⎢─────── ───── ⎥ \n\ ⎢x - 2⋅y x + y ⎥ ⎢ x + y x - 2⋅y⎥ ⎢x - 2⋅y x + y ⎥ \n\ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ \n\ ⎢ 2 2 ⎥ ⎢ 2 2 ⎥ ⎢ 2 2 ⎥ \n\ ⎢x + y x - y ⎥ ⎢x - y x + y ⎥ ⎢x + y x - y ⎥ \n\ ⎢────── ────── ⎥ + ⎢────── ────── ⎥ + ⎢────── ────── ⎥ \n\ ⎢-x + y 3 ⎥ ⎢ 3 -x + y ⎥ ⎢-x + y 3 ⎥ \n\ ⎢ x + x ⎥ ⎢x + x ⎥ ⎢ x + x ⎥ \n\ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ \n\ ⎢-x + y -x - y⎥ ⎢ -x - y -x + y ⎥ ⎢-x + y -x - y⎥ \n\ ⎢────── ───────⎥ ⎢─────── ────── ⎥ ⎢────── ───────⎥ \n\ ⎣x + y x - 2⋅y⎦τ ⎣x - 2⋅y x + y ⎦τ ⎣x + y x - 2⋅y⎦τ\ """ expected6 = \ """\ ⎡ x - y x + y ⎤ ⎡-x + y -x - y ⎤ \n\ ⎢ ───── ───────⎥ ⎢────── ─────── ⎥ \n\ ⎢ x + y x - 2⋅y⎥ ⎡ -x - y -x + y⎤ ⎢x + y x - 2⋅y ⎥ \n\ ⎢ ⎥ ⎢─────── ──────⎥ ⎢ ⎥ \n\ ⎢ 2 2 ⎥ ⎢x - 2⋅y x + y ⎥ ⎢ 2 2 ⎥ \n\ ⎢x - y x + y ⎥ ⎢ ⎥ ⎢-x + y - x - y⎥ \n\ ⎢────── ────── ⎥ ⋅⎢ 2 2⎥ + ⎢─────── ────────⎥ \n\ ⎢ 3 -x + y ⎥ ⎢- x - y x - y ⎥ ⎢ 3 -x + y ⎥ \n\ ⎢x + x ⎥ ⎢──────── ──────⎥ ⎢ x + x ⎥ \n\ ⎢ ⎥ ⎢ -x + y 3 ⎥ ⎢ ⎥ \n\ ⎢ -x - y -x + y ⎥ ⎣ x + x⎦τ ⎢ x + y x - y ⎥ \n\ ⎢─────── ────── ⎥ ⎢─────── ───── ⎥ \n\ ⎣x - 2⋅y x + y ⎦τ ⎣x - 2⋅y x + y ⎦τ\ """ assert upretty(Parallel(tf1, tf2)) == expected1 assert upretty(Parallel(-tf2, -tf1)) == expected2 assert upretty(Parallel(tf3, tf1, Series(-tf1, tf2))) == expected3 assert upretty(Parallel(Series(tf1, tf2), Series(tf2, tf3))) == expected4 assert upretty(MIMOParallel(-tfm3, -tfm2, tfm1)) == expected5 assert upretty(MIMOParallel(MIMOSeries(tfm4, -tfm2), tfm2)) == expected6 def test_pretty_Feedback(): tf = TransferFunction(1, 1, y) tf1 = TransferFunction(x + y, x - 2*y, y) tf2 = TransferFunction(x - y, x + y, y) tf3 = TransferFunction(y**2 - 2*y + 1, y + 5, y) tf4 = TransferFunction(x - 2*y**3, x + y, x) tf5 = TransferFunction(1 - x, x - y, y) tf6 = TransferFunction(2, 2, x) expected1 = \ """\ ⎛1⎞ \n\ ⎜─⎟ \n\ ⎝1⎠ \n\ ─────────────\n\ 1 ⎛ x + y ⎞\n\ ─ + ⎜───────⎟\n\ 1 ⎝x - 2⋅y⎠\ """ expected2 = \ """\ ⎛1⎞ \n\ ⎜─⎟ \n\ ⎝1⎠ \n\ ────────────────────────────────────\n\ ⎛ 2 ⎞\n\ 1 ⎛x - y⎞ ⎛ x + y ⎞ ⎜y - 2⋅y + 1⎟\n\ ─ + ⎜─────⎟⋅⎜───────⎟⋅⎜────────────⎟\n\ 1 ⎝x + y⎠ ⎝x - 2⋅y⎠ ⎝ y + 5 ⎠\ """ expected3 = \ """\ ⎛ x + y ⎞ \n\ ⎜───────⎟ \n\ ⎝x - 2⋅y⎠ \n\ ────────────────────────────────────────────\n\ ⎛ 2 ⎞ \n\ 1 ⎛ x + y ⎞ ⎛x - y⎞ ⎜y - 2⋅y + 1⎟ ⎛1 - x⎞\n\ ─ + ⎜───────⎟⋅⎜─────⎟⋅⎜────────────⎟⋅⎜─────⎟\n\ 1 ⎝x - 2⋅y⎠ ⎝x + y⎠ ⎝ y + 5 ⎠ ⎝x - y⎠\ """ expected4 = \ """\ ⎛ x + y ⎞ ⎛x - y⎞ \n\ ⎜───────⎟⋅⎜─────⎟ \n\ ⎝x - 2⋅y⎠ ⎝x + y⎠ \n\ ─────────────────────\n\ 1 ⎛ x + y ⎞ ⎛x - y⎞\n\ ─ + ⎜───────⎟⋅⎜─────⎟\n\ 1 ⎝x - 2⋅y⎠ ⎝x + y⎠\ """ expected5 = \ """\ ⎛ x + y ⎞ ⎛x - y⎞ \n\ ⎜───────⎟⋅⎜─────⎟ \n\ ⎝x - 2⋅y⎠ ⎝x + y⎠ \n\ ─────────────────────────────\n\ 1 ⎛ x + y ⎞ ⎛x - y⎞ ⎛1 - x⎞\n\ ─ + ⎜───────⎟⋅⎜─────⎟⋅⎜─────⎟\n\ 1 ⎝x - 2⋅y⎠ ⎝x + y⎠ ⎝x - y⎠\ """ expected6 = \ """\ ⎛ 2 ⎞ \n\ ⎜y - 2⋅y + 1⎟ ⎛1 - x⎞ \n\ ⎜────────────⎟⋅⎜─────⎟ \n\ ⎝ y + 5 ⎠ ⎝x - y⎠ \n\ ────────────────────────────────────────────\n\ ⎛ 2 ⎞ \n\ 1 ⎜y - 2⋅y + 1⎟ ⎛1 - x⎞ ⎛x - y⎞ ⎛ x + y ⎞\n\ ─ + ⎜────────────⎟⋅⎜─────⎟⋅⎜─────⎟⋅⎜───────⎟\n\ 1 ⎝ y + 5 ⎠ ⎝x - y⎠ ⎝x + y⎠ ⎝x - 2⋅y⎠\ """ expected7 = \ """\ ⎛ 3⎞ \n\ ⎜x - 2⋅y ⎟ \n\ ⎜────────⎟ \n\ ⎝ x + y ⎠ \n\ ──────────────────\n\ ⎛ 3⎞ \n\ 1 ⎜x - 2⋅y ⎟ ⎛2⎞\n\ ─ + ⎜────────⎟⋅⎜─⎟\n\ 1 ⎝ x + y ⎠ ⎝2⎠\ """ expected8 = \ """\ ⎛1 - x⎞ \n\ ⎜─────⎟ \n\ ⎝x - y⎠ \n\ ───────────\n\ 1 ⎛1 - x⎞\n\ ─ + ⎜─────⎟\n\ 1 ⎝x - y⎠\ """ expected9 = \ """\ ⎛ x + y ⎞ ⎛x - y⎞ \n\ ⎜───────⎟⋅⎜─────⎟ \n\ ⎝x - 2⋅y⎠ ⎝x + y⎠ \n\ ─────────────────────────────\n\ 1 ⎛ x + y ⎞ ⎛x - y⎞ ⎛1 - x⎞\n\ ─ - ⎜───────⎟⋅⎜─────⎟⋅⎜─────⎟\n\ 1 ⎝x - 2⋅y⎠ ⎝x + y⎠ ⎝x - y⎠\ """ expected10 = \ """\ ⎛1 - x⎞ \n\ ⎜─────⎟ \n\ ⎝x - y⎠ \n\ ───────────\n\ 1 ⎛1 - x⎞\n\ ─ - ⎜─────⎟\n\ 1 ⎝x - y⎠\ """ assert upretty(Feedback(tf, tf1)) == expected1 assert upretty(Feedback(tf, tf2*tf1*tf3)) == expected2 assert upretty(Feedback(tf1, tf2*tf3*tf5)) == expected3 assert upretty(Feedback(tf1*tf2, tf)) == expected4 assert upretty(Feedback(tf1*tf2, tf5)) == expected5 assert upretty(Feedback(tf3*tf5, tf2*tf1)) == expected6 assert upretty(Feedback(tf4, tf6)) == expected7 assert upretty(Feedback(tf5, tf)) == expected8 assert upretty(Feedback(tf1*tf2, tf5, 1)) == expected9 assert upretty(Feedback(tf5, tf, 1)) == expected10 def test_pretty_MIMOFeedback(): tf1 = TransferFunction(x + y, x - 2*y, y) tf2 = TransferFunction(x - y, x + y, y) tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) tfm_2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]]) tfm_3 = TransferFunctionMatrix([[tf1, tf1], [tf2, tf2]]) expected1 = \ """\ ⎛ ⎡ x + y x - y ⎤ ⎡ x - y x + y ⎤ ⎞-1 ⎡ x + y x - y ⎤ \n\ ⎜ ⎢─────── ───── ⎥ ⎢ ───── ───────⎥ ⎟ ⎢─────── ───── ⎥ \n\ ⎜ ⎢x - 2⋅y x + y ⎥ ⎢ x + y x - 2⋅y⎥ ⎟ ⎢x - 2⋅y x + y ⎥ \n\ ⎜I - ⎢ ⎥ ⋅⎢ ⎥ ⎟ ⋅ ⎢ ⎥ \n\ ⎜ ⎢ x - y x + y ⎥ ⎢ x + y x - y ⎥ ⎟ ⎢ x - y x + y ⎥ \n\ ⎜ ⎢ ───── ───────⎥ ⎢─────── ───── ⎥ ⎟ ⎢ ───── ───────⎥ \n\ ⎝ ⎣ x + y x - 2⋅y⎦τ ⎣x - 2⋅y x + y ⎦τ⎠ ⎣ x + y x - 2⋅y⎦τ\ """ expected2 = \ """\ ⎛ ⎡ x + y x - y ⎤ ⎡ x - y x + y ⎤ ⎡ x + y x + y ⎤ ⎞-1 ⎡ x + y x - y ⎤ ⎡ x - y x + y ⎤ \n\ ⎜ ⎢─────── ───── ⎥ ⎢ ───── ───────⎥ ⎢─────── ───────⎥ ⎟ ⎢─────── ───── ⎥ ⎢ ───── ───────⎥ \n\ ⎜ ⎢x - 2⋅y x + y ⎥ ⎢ x + y x - 2⋅y⎥ ⎢x - 2⋅y x - 2⋅y⎥ ⎟ ⎢x - 2⋅y x + y ⎥ ⎢ x + y x - 2⋅y⎥ \n\ ⎜I + ⎢ ⎥ ⋅⎢ ⎥ ⋅⎢ ⎥ ⎟ ⋅ ⎢ ⎥ ⋅⎢ ⎥ \n\ ⎜ ⎢ x - y x + y ⎥ ⎢ x + y x - y ⎥ ⎢ x - y x - y ⎥ ⎟ ⎢ x - y x + y ⎥ ⎢ x + y x - y ⎥ \n\ ⎜ ⎢ ───── ───────⎥ ⎢─────── ───── ⎥ ⎢ ───── ───── ⎥ ⎟ ⎢ ───── ───────⎥ ⎢─────── ───── ⎥ \n\ ⎝ ⎣ x + y x - 2⋅y⎦τ ⎣x - 2⋅y x + y ⎦τ ⎣ x + y x + y ⎦τ⎠ ⎣ x + y x - 2⋅y⎦τ ⎣x - 2⋅y x + y ⎦τ\ """ assert upretty(MIMOFeedback(tfm_1, tfm_2, 1)) == \ expected1 # Positive MIMOFeedback assert upretty(MIMOFeedback(tfm_1*tfm_2, tfm_3)) == \ expected2 # Negative MIMOFeedback (Default) def test_pretty_TransferFunctionMatrix(): tf1 = TransferFunction(x + y, x - 2*y, y) tf2 = TransferFunction(x - y, x + y, y) tf3 = TransferFunction(y**2 - 2*y + 1, y + 5, y) tf4 = TransferFunction(y, x**2 + x + 1, y) tf5 = TransferFunction(1 - x, x - y, y) tf6 = TransferFunction(2, 2, y) expected1 = \ """\ ⎡ x + y ⎤ \n\ ⎢───────⎥ \n\ ⎢x - 2⋅y⎥ \n\ ⎢ ⎥ \n\ ⎢ x - y ⎥ \n\ ⎢ ───── ⎥ \n\ ⎣ x + y ⎦τ\ """ expected2 = \ """\ ⎡ x + y ⎤ \n\ ⎢ ─────── ⎥ \n\ ⎢ x - 2⋅y ⎥ \n\ ⎢ ⎥ \n\ ⎢ x - y ⎥ \n\ ⎢ ───── ⎥ \n\ ⎢ x + y ⎥ \n\ ⎢ ⎥ \n\ ⎢ 2 ⎥ \n\ ⎢- y + 2⋅y - 1⎥ \n\ ⎢──────────────⎥ \n\ ⎣ y + 5 ⎦τ\ """ expected3 = \ """\ ⎡ x + y x - y ⎤ \n\ ⎢ ─────── ───── ⎥ \n\ ⎢ x - 2⋅y x + y ⎥ \n\ ⎢ ⎥ \n\ ⎢ 2 ⎥ \n\ ⎢y - 2⋅y + 1 y ⎥ \n\ ⎢──────────── ──────────⎥ \n\ ⎢ y + 5 2 ⎥ \n\ ⎢ x + x + 1⎥ \n\ ⎢ ⎥ \n\ ⎢ 1 - x 2 ⎥ \n\ ⎢ ───── ─ ⎥ \n\ ⎣ x - y 2 ⎦τ\ """ expected4 = \ """\ ⎡ x - y x + y y ⎤ \n\ ⎢ ───── ─────── ──────────⎥ \n\ ⎢ x + y x - 2⋅y 2 ⎥ \n\ ⎢ x + x + 1⎥ \n\ ⎢ ⎥ \n\ ⎢ 2 ⎥ \n\ ⎢- y + 2⋅y - 1 x - 1 -2 ⎥ \n\ ⎢────────────── ───── ─── ⎥ \n\ ⎣ y + 5 x - y 2 ⎦τ\ """ expected5 = \ """\ ⎡ x + y x - y x + y y ⎤ \n\ ⎢───────⋅───── ─────── ──────────⎥ \n\ ⎢x - 2⋅y x + y x - 2⋅y 2 ⎥ \n\ ⎢ x + x + 1⎥ \n\ ⎢ ⎥ \n\ ⎢ 1 - x 2 x + y -2 ⎥ \n\ ⎢ ───── + ─ ─────── ─── ⎥ \n\ ⎣ x - y 2 x - 2⋅y 2 ⎦τ\ """ assert upretty(TransferFunctionMatrix([[tf1], [tf2]])) == expected1 assert upretty(TransferFunctionMatrix([[tf1], [tf2], [-tf3]])) == expected2 assert upretty(TransferFunctionMatrix([[tf1, tf2], [tf3, tf4], [tf5, tf6]])) == expected3 assert upretty(TransferFunctionMatrix([[tf2, tf1, tf4], [-tf3, -tf5, -tf6]])) == expected4 assert upretty(TransferFunctionMatrix([[Series(tf2, tf1), tf1, tf4], [Parallel(tf6, tf5), tf1, -tf6]])) == \ expected5 def test_pretty_order(): expr = O(1) ascii_str = \ """\ O(1)\ """ ucode_str = \ """\ O(1)\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(1/x) ascii_str = \ """\ /1\\\n\ O|-|\n\ \\x/\ """ ucode_str = \ """\ ⎛1⎞\n\ O⎜─⎟\n\ ⎝x⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(x**2 + y**2) ascii_str = \ """\ / 2 2 \\\n\ O\\x + y ; (x, y) -> (0, 0)/\ """ ucode_str = \ """\ ⎛ 2 2 ⎞\n\ O⎝x + y ; (x, y) → (0, 0)⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(1, (x, oo)) ascii_str = \ """\ O(1; x -> oo)\ """ ucode_str = \ """\ O(1; x → ∞)\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(1/x, (x, oo)) ascii_str = \ """\ /1 \\\n\ O|-; x -> oo|\n\ \\x /\ """ ucode_str = \ """\ ⎛1 ⎞\n\ O⎜─; x → ∞⎟\n\ ⎝x ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(x**2 + y**2, (x, oo), (y, oo)) ascii_str = \ """\ / 2 2 \\\n\ O\\x + y ; (x, y) -> (oo, oo)/\ """ ucode_str = \ """\ ⎛ 2 2 ⎞\n\ O⎝x + y ; (x, y) → (∞, ∞)⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_derivatives(): # Simple expr = Derivative(log(x), x, evaluate=False) ascii_str = \ """\ d \n\ --(log(x))\n\ dx \ """ ucode_str = \ """\ d \n\ ──(log(x))\n\ dx \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Derivative(log(x), x, evaluate=False) + x ascii_str_1 = \ """\ d \n\ x + --(log(x))\n\ dx \ """ ascii_str_2 = \ """\ d \n\ --(log(x)) + x\n\ dx \ """ ucode_str_1 = \ """\ d \n\ x + ──(log(x))\n\ dx \ """ ucode_str_2 = \ """\ d \n\ ──(log(x)) + x\n\ dx \ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] # basic partial derivatives expr = Derivative(log(x + y) + x, x) ascii_str_1 = \ """\ d \n\ --(log(x + y) + x)\n\ dx \ """ ascii_str_2 = \ """\ d \n\ --(x + log(x + y))\n\ dx \ """ ucode_str_1 = \ """\ ∂ \n\ ──(log(x + y) + x)\n\ ∂x \ """ ucode_str_2 = \ """\ ∂ \n\ ──(x + log(x + y))\n\ ∂x \ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2], upretty(expr) # Multiple symbols expr = Derivative(log(x) + x**2, x, y) ascii_str_1 = \ """\ 2 \n\ d / 2\\\n\ -----\\log(x) + x /\n\ dy dx \ """ ascii_str_2 = \ """\ 2 \n\ d / 2 \\\n\ -----\\x + log(x)/\n\ dy dx \ """ ucode_str_1 = \ """\ 2 \n\ d ⎛ 2⎞\n\ ─────⎝log(x) + x ⎠\n\ dy dx \ """ ucode_str_2 = \ """\ 2 \n\ d ⎛ 2 ⎞\n\ ─────⎝x + log(x)⎠\n\ dy dx \ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Derivative(2*x*y, y, x) + x**2 ascii_str_1 = \ """\ 2 \n\ d 2\n\ -----(2*x*y) + x \n\ dx dy \ """ ascii_str_2 = \ """\ 2 \n\ 2 d \n\ x + -----(2*x*y)\n\ dx dy \ """ ucode_str_1 = \ """\ 2 \n\ ∂ 2\n\ ─────(2⋅x⋅y) + x \n\ ∂x ∂y \ """ ucode_str_2 = \ """\ 2 \n\ 2 ∂ \n\ x + ─────(2⋅x⋅y)\n\ ∂x ∂y \ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Derivative(2*x*y, x, x) ascii_str = \ """\ 2 \n\ d \n\ ---(2*x*y)\n\ 2 \n\ dx \ """ ucode_str = \ """\ 2 \n\ ∂ \n\ ───(2⋅x⋅y)\n\ 2 \n\ ∂x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Derivative(2*x*y, x, 17) ascii_str = \ """\ 17 \n\ d \n\ ----(2*x*y)\n\ 17 \n\ dx \ """ ucode_str = \ """\ 17 \n\ ∂ \n\ ────(2⋅x⋅y)\n\ 17 \n\ ∂x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Derivative(2*x*y, x, x, y) ascii_str = \ """\ 3 \n\ d \n\ ------(2*x*y)\n\ 2 \n\ dy dx \ """ ucode_str = \ """\ 3 \n\ ∂ \n\ ──────(2⋅x⋅y)\n\ 2 \n\ ∂y ∂x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # Greek letters alpha = Symbol('alpha') beta = Function('beta') expr = beta(alpha).diff(alpha) ascii_str = \ """\ d \n\ ------(beta(alpha))\n\ dalpha \ """ ucode_str = \ """\ d \n\ ──(β(α))\n\ dα \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Derivative(f(x), (x, n)) ascii_str = \ """\ n \n\ d \n\ ---(f(x))\n\ n \n\ dx \ """ ucode_str = \ """\ n \n\ d \n\ ───(f(x))\n\ n \n\ dx \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_integrals(): expr = Integral(log(x), x) ascii_str = \ """\ / \n\ | \n\ | log(x) dx\n\ | \n\ / \ """ ucode_str = \ """\ ⌠ \n\ ⎮ log(x) dx\n\ ⌡ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**2, x) ascii_str = \ """\ / \n\ | \n\ | 2 \n\ | x dx\n\ | \n\ / \ """ ucode_str = \ """\ ⌠ \n\ ⎮ 2 \n\ ⎮ x dx\n\ ⌡ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral((sin(x))**2 / (tan(x))**2) ascii_str = \ """\ / \n\ | \n\ | 2 \n\ | sin (x) \n\ | ------- dx\n\ | 2 \n\ | tan (x) \n\ | \n\ / \ """ ucode_str = \ """\ ⌠ \n\ ⎮ 2 \n\ ⎮ sin (x) \n\ ⎮ ─────── dx\n\ ⎮ 2 \n\ ⎮ tan (x) \n\ ⌡ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**(2**x), x) ascii_str = \ """\ / \n\ | \n\ | / x\\ \n\ | \\2 / \n\ | x dx\n\ | \n\ / \ """ ucode_str = \ """\ ⌠ \n\ ⎮ ⎛ x⎞ \n\ ⎮ ⎝2 ⎠ \n\ ⎮ x dx\n\ ⌡ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**2, (x, 1, 2)) ascii_str = \ """\ 2 \n\ / \n\ | \n\ | 2 \n\ | x dx\n\ | \n\ / \n\ 1 \ """ ucode_str = \ """\ 2 \n\ ⌠ \n\ ⎮ 2 \n\ ⎮ x dx\n\ ⌡ \n\ 1 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**2, (x, Rational(1, 2), 10)) ascii_str = \ """\ 10 \n\ / \n\ | \n\ | 2 \n\ | x dx\n\ | \n\ / \n\ 1/2 \ """ ucode_str = \ """\ 10 \n\ ⌠ \n\ ⎮ 2 \n\ ⎮ x dx\n\ ⌡ \n\ 1/2 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**2*y**2, x, y) ascii_str = \ """\ / / \n\ | | \n\ | | 2 2 \n\ | | x *y dx dy\n\ | | \n\ / / \ """ ucode_str = \ """\ ⌠ ⌠ \n\ ⎮ ⎮ 2 2 \n\ ⎮ ⎮ x ⋅y dx dy\n\ ⌡ ⌡ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(sin(th)/cos(ph), (th, 0, pi), (ph, 0, 2*pi)) ascii_str = \ """\ 2*pi pi \n\ / / \n\ | | \n\ | | sin(theta) \n\ | | ---------- d(theta) d(phi)\n\ | | cos(phi) \n\ | | \n\ / / \n\ 0 0 \ """ ucode_str = \ """\ 2⋅π π \n\ ⌠ ⌠ \n\ ⎮ ⎮ sin(θ) \n\ ⎮ ⎮ ────── dθ dφ\n\ ⎮ ⎮ cos(φ) \n\ ⌡ ⌡ \n\ 0 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_matrix(): # Empty Matrix expr = Matrix() ascii_str = "[]" unicode_str = "[]" assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Matrix(2, 0, lambda i, j: 0) ascii_str = "[]" unicode_str = "[]" assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Matrix(0, 2, lambda i, j: 0) ascii_str = "[]" unicode_str = "[]" assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Matrix([[x**2 + 1, 1], [y, x + y]]) ascii_str_1 = \ """\ [ 2 ] [1 + x 1 ] [ ] [ y x + y]\ """ ascii_str_2 = \ """\ [ 2 ] [x + 1 1 ] [ ] [ y x + y]\ """ ucode_str_1 = \ """\ ⎡ 2 ⎤ ⎢1 + x 1 ⎥ ⎢ ⎥ ⎣ y x + y⎦\ """ ucode_str_2 = \ """\ ⎡ 2 ⎤ ⎢x + 1 1 ⎥ ⎢ ⎥ ⎣ y x + y⎦\ """ assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]]) ascii_str = \ """\ [x ] [- y theta] [y ] [ ] [ I*k*phi ] [0 e 1 ]\ """ ucode_str = \ """\ ⎡x ⎤ ⎢─ y θ⎥ ⎢y ⎥ ⎢ ⎥ ⎢ ⅈ⋅k⋅φ ⎥ ⎣0 ℯ 1⎦\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str unicode_str = \ """\ ⎡v̇_msc_00 0 0 ⎤ ⎢ ⎥ ⎢ 0 v̇_msc_01 0 ⎥ ⎢ ⎥ ⎣ 0 0 v̇_msc_02⎦\ """ expr = diag(*MatrixSymbol('vdot_msc',1,3)) assert upretty(expr) == unicode_str def test_pretty_ndim_arrays(): x, y, z, w = symbols("x y z w") for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray): # Basic: scalar array M = ArrayType(x) assert pretty(M) == "x" assert upretty(M) == "x" M = ArrayType([[1/x, y], [z, w]]) M1 = ArrayType([1/x, y, z]) M2 = tensorproduct(M1, M) M3 = tensorproduct(M, M) ascii_str = \ """\ [1 ]\n\ [- y]\n\ [x ]\n\ [ ]\n\ [z w]\ """ ucode_str = \ """\ ⎡1 ⎤\n\ ⎢─ y⎥\n\ ⎢x ⎥\n\ ⎢ ⎥\n\ ⎣z w⎦\ """ assert pretty(M) == ascii_str assert upretty(M) == ucode_str ascii_str = \ """\ [1 ]\n\ [- y z]\n\ [x ]\ """ ucode_str = \ """\ ⎡1 ⎤\n\ ⎢─ y z⎥\n\ ⎣x ⎦\ """ assert pretty(M1) == ascii_str assert upretty(M1) == ucode_str ascii_str = \ """\ [[1 y] ]\n\ [[-- -] [z ]]\n\ [[ 2 x] [ y 2 ] [- y*z]]\n\ [[x ] [ - y ] [x ]]\n\ [[ ] [ x ] [ ]]\n\ [[z w] [ ] [ 2 ]]\n\ [[- -] [y*z w*y] [z w*z]]\n\ [[x x] ]\ """ ucode_str = \ """\ ⎡⎡1 y⎤ ⎤\n\ ⎢⎢── ─⎥ ⎡z ⎤⎥\n\ ⎢⎢ 2 x⎥ ⎡ y 2 ⎤ ⎢─ y⋅z⎥⎥\n\ ⎢⎢x ⎥ ⎢ ─ y ⎥ ⎢x ⎥⎥\n\ ⎢⎢ ⎥ ⎢ x ⎥ ⎢ ⎥⎥\n\ ⎢⎢z w⎥ ⎢ ⎥ ⎢ 2 ⎥⎥\n\ ⎢⎢─ ─⎥ ⎣y⋅z w⋅y⎦ ⎣z w⋅z⎦⎥\n\ ⎣⎣x x⎦ ⎦\ """ assert pretty(M2) == ascii_str assert upretty(M2) == ucode_str ascii_str = \ """\ [ [1 y] ]\n\ [ [-- -] ]\n\ [ [ 2 x] [ y 2 ]]\n\ [ [x ] [ - y ]]\n\ [ [ ] [ x ]]\n\ [ [z w] [ ]]\n\ [ [- -] [y*z w*y]]\n\ [ [x x] ]\n\ [ ]\n\ [[z ] [ w ]]\n\ [[- y*z] [ - w*y]]\n\ [[x ] [ x ]]\n\ [[ ] [ ]]\n\ [[ 2 ] [ 2 ]]\n\ [[z w*z] [w*z w ]]\ """ ucode_str = \ """\ ⎡ ⎡1 y⎤ ⎤\n\ ⎢ ⎢── ─⎥ ⎥\n\ ⎢ ⎢ 2 x⎥ ⎡ y 2 ⎤⎥\n\ ⎢ ⎢x ⎥ ⎢ ─ y ⎥⎥\n\ ⎢ ⎢ ⎥ ⎢ x ⎥⎥\n\ ⎢ ⎢z w⎥ ⎢ ⎥⎥\n\ ⎢ ⎢─ ─⎥ ⎣y⋅z w⋅y⎦⎥\n\ ⎢ ⎣x x⎦ ⎥\n\ ⎢ ⎥\n\ ⎢⎡z ⎤ ⎡ w ⎤⎥\n\ ⎢⎢─ y⋅z⎥ ⎢ ─ w⋅y⎥⎥\n\ ⎢⎢x ⎥ ⎢ x ⎥⎥\n\ ⎢⎢ ⎥ ⎢ ⎥⎥\n\ ⎢⎢ 2 ⎥ ⎢ 2 ⎥⎥\n\ ⎣⎣z w⋅z⎦ ⎣w⋅z w ⎦⎦\ """ assert pretty(M3) == ascii_str assert upretty(M3) == ucode_str Mrow = ArrayType([[x, y, 1 / z]]) Mcolumn = ArrayType([[x], [y], [1 / z]]) Mcol2 = ArrayType([Mcolumn.tolist()]) ascii_str = \ """\ [[ 1]]\n\ [[x y -]]\n\ [[ z]]\ """ ucode_str = \ """\ ⎡⎡ 1⎤⎤\n\ ⎢⎢x y ─⎥⎥\n\ ⎣⎣ z⎦⎦\ """ assert pretty(Mrow) == ascii_str assert upretty(Mrow) == ucode_str ascii_str = \ """\ [x]\n\ [ ]\n\ [y]\n\ [ ]\n\ [1]\n\ [-]\n\ [z]\ """ ucode_str = \ """\ ⎡x⎤\n\ ⎢ ⎥\n\ ⎢y⎥\n\ ⎢ ⎥\n\ ⎢1⎥\n\ ⎢─⎥\n\ ⎣z⎦\ """ assert pretty(Mcolumn) == ascii_str assert upretty(Mcolumn) == ucode_str ascii_str = \ """\ [[x]]\n\ [[ ]]\n\ [[y]]\n\ [[ ]]\n\ [[1]]\n\ [[-]]\n\ [[z]]\ """ ucode_str = \ """\ ⎡⎡x⎤⎤\n\ ⎢⎢ ⎥⎥\n\ ⎢⎢y⎥⎥\n\ ⎢⎢ ⎥⎥\n\ ⎢⎢1⎥⎥\n\ ⎢⎢─⎥⎥\n\ ⎣⎣z⎦⎦\ """ assert pretty(Mcol2) == ascii_str assert upretty(Mcol2) == ucode_str def test_tensor_TensorProduct(): A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) assert upretty(TensorProduct(A, B)) == "A\u2297B" assert upretty(TensorProduct(A, B, A)) == "A\u2297B\u2297A" def test_diffgeom_print_WedgeProduct(): from sympy.diffgeom.rn import R2 from sympy.diffgeom import WedgeProduct wp = WedgeProduct(R2.dx, R2.dy) assert upretty(wp) == "ⅆ x∧ⅆ y" assert pretty(wp) == r"d x/\d y" def test_Adjoint(): X = MatrixSymbol('X', 2, 2) Y = MatrixSymbol('Y', 2, 2) assert pretty(Adjoint(X)) == " +\nX " assert pretty(Adjoint(X + Y)) == " +\n(X + Y) " assert pretty(Adjoint(X) + Adjoint(Y)) == " + +\nX + Y " assert pretty(Adjoint(X*Y)) == " +\n(X*Y) " assert pretty(Adjoint(Y)*Adjoint(X)) == " + +\nY *X " assert pretty(Adjoint(X**2)) == " +\n/ 2\\ \n\\X / " assert pretty(Adjoint(X)**2) == " 2\n/ +\\ \n\\X / " assert pretty(Adjoint(Inverse(X))) == " +\n/ -1\\ \n\\X / " assert pretty(Inverse(Adjoint(X))) == " -1\n/ +\\ \n\\X / " assert pretty(Adjoint(Transpose(X))) == " +\n/ T\\ \n\\X / " assert pretty(Transpose(Adjoint(X))) == " T\n/ +\\ \n\\X / " assert upretty(Adjoint(X)) == " †\nX " assert upretty(Adjoint(X + Y)) == " †\n(X + Y) " assert upretty(Adjoint(X) + Adjoint(Y)) == " † †\nX + Y " assert upretty(Adjoint(X*Y)) == " †\n(X⋅Y) " assert upretty(Adjoint(Y)*Adjoint(X)) == " † †\nY ⋅X " assert upretty(Adjoint(X**2)) == \ " †\n⎛ 2⎞ \n⎝X ⎠ " assert upretty(Adjoint(X)**2) == \ " 2\n⎛ †⎞ \n⎝X ⎠ " assert upretty(Adjoint(Inverse(X))) == \ " †\n⎛ -1⎞ \n⎝X ⎠ " assert upretty(Inverse(Adjoint(X))) == \ " -1\n⎛ †⎞ \n⎝X ⎠ " assert upretty(Adjoint(Transpose(X))) == \ " †\n⎛ T⎞ \n⎝X ⎠ " assert upretty(Transpose(Adjoint(X))) == \ " T\n⎛ †⎞ \n⎝X ⎠ " m = Matrix(((1, 2), (3, 4))) assert upretty(Adjoint(m)) == \ ' †\n'\ '⎡1 2⎤ \n'\ '⎢ ⎥ \n'\ '⎣3 4⎦ ' assert upretty(Adjoint(m+X)) == \ ' †\n'\ '⎛⎡1 2⎤ ⎞ \n'\ '⎜⎢ ⎥ + X⎟ \n'\ '⎝⎣3 4⎦ ⎠ ' def test_pretty_Trace_issue_9044(): X = Matrix([[1, 2], [3, 4]]) Y = Matrix([[2, 4], [6, 8]]) ascii_str_1 = \ """\ /[1 2]\\ tr|[ ]| \\[3 4]/\ """ ucode_str_1 = \ """\ ⎛⎡1 2⎤⎞ tr⎜⎢ ⎥⎟ ⎝⎣3 4⎦⎠\ """ ascii_str_2 = \ """\ /[1 2]\\ /[2 4]\\ tr|[ ]| + tr|[ ]| \\[3 4]/ \\[6 8]/\ """ ucode_str_2 = \ """\ ⎛⎡1 2⎤⎞ ⎛⎡2 4⎤⎞ tr⎜⎢ ⎥⎟ + tr⎜⎢ ⎥⎟ ⎝⎣3 4⎦⎠ ⎝⎣6 8⎦⎠\ """ assert pretty(Trace(X)) == ascii_str_1 assert upretty(Trace(X)) == ucode_str_1 assert pretty(Trace(X) + Trace(Y)) == ascii_str_2 assert upretty(Trace(X) + Trace(Y)) == ucode_str_2 def test_MatrixSlice(): n = Symbol('n', integer=True) x, y, z, w, t, = symbols('x y z w t') X = MatrixSymbol('X', n, n) Y = MatrixSymbol('Y', 10, 10) Z = MatrixSymbol('Z', 10, 10) expr = MatrixSlice(X, (None, None, None), (None, None, None)) assert pretty(expr) == upretty(expr) == 'X[:, :]' expr = X[x:x + 1, y:y + 1] assert pretty(expr) == upretty(expr) == 'X[x:x + 1, y:y + 1]' expr = X[x:x + 1:2, y:y + 1:2] assert pretty(expr) == upretty(expr) == 'X[x:x + 1:2, y:y + 1:2]' expr = X[:x, y:] assert pretty(expr) == upretty(expr) == 'X[:x, y:]' expr = X[:x, y:] assert pretty(expr) == upretty(expr) == 'X[:x, y:]' expr = X[x:, :y] assert pretty(expr) == upretty(expr) == 'X[x:, :y]' expr = X[x:y, z:w] assert pretty(expr) == upretty(expr) == 'X[x:y, z:w]' expr = X[x:y:t, w:t:x] assert pretty(expr) == upretty(expr) == 'X[x:y:t, w:t:x]' expr = X[x::y, t::w] assert pretty(expr) == upretty(expr) == 'X[x::y, t::w]' expr = X[:x:y, :t:w] assert pretty(expr) == upretty(expr) == 'X[:x:y, :t:w]' expr = X[::x, ::y] assert pretty(expr) == upretty(expr) == 'X[::x, ::y]' expr = MatrixSlice(X, (0, None, None), (0, None, None)) assert pretty(expr) == upretty(expr) == 'X[:, :]' expr = MatrixSlice(X, (None, n, None), (None, n, None)) assert pretty(expr) == upretty(expr) == 'X[:, :]' expr = MatrixSlice(X, (0, n, None), (0, n, None)) assert pretty(expr) == upretty(expr) == 'X[:, :]' expr = MatrixSlice(X, (0, n, 2), (0, n, 2)) assert pretty(expr) == upretty(expr) == 'X[::2, ::2]' expr = X[1:2:3, 4:5:6] assert pretty(expr) == upretty(expr) == 'X[1:2:3, 4:5:6]' expr = X[1:3:5, 4:6:8] assert pretty(expr) == upretty(expr) == 'X[1:3:5, 4:6:8]' expr = X[1:10:2] assert pretty(expr) == upretty(expr) == 'X[1:10:2, :]' expr = Y[:5, 1:9:2] assert pretty(expr) == upretty(expr) == 'Y[:5, 1:9:2]' expr = Y[:5, 1:10:2] assert pretty(expr) == upretty(expr) == 'Y[:5, 1::2]' expr = Y[5, :5:2] assert pretty(expr) == upretty(expr) == 'Y[5:6, :5:2]' expr = X[0:1, 0:1] assert pretty(expr) == upretty(expr) == 'X[:1, :1]' expr = X[0:1:2, 0:1:2] assert pretty(expr) == upretty(expr) == 'X[:1:2, :1:2]' expr = (Y + Z)[2:, 2:] assert pretty(expr) == upretty(expr) == '(Y + Z)[2:, 2:]' def test_MatrixExpressions(): n = Symbol('n', integer=True) X = MatrixSymbol('X', n, n) assert pretty(X) == upretty(X) == "X" # Apply function elementwise (`ElementwiseApplyFunc`): expr = (X.T*X).applyfunc(sin) ascii_str = """\ / T \\\n\ (d -> sin(d)).\\X *X/\ """ ucode_str = """\ ⎛ T ⎞\n\ (d ↦ sin(d))˳⎝X ⋅X⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str lamda = Lambda(x, 1/x) expr = (n*X).applyfunc(lamda) ascii_str = """\ / 1\\ \n\ |x -> -|.(n*X)\n\ \\ x/ \ """ ucode_str = """\ ⎛ 1⎞ \n\ ⎜x ↦ ─⎟˳(n⋅X)\n\ ⎝ x⎠ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_dotproduct(): from sympy.matrices.expressions.dotproduct import DotProduct n = symbols("n", integer=True) A = MatrixSymbol('A', n, 1) B = MatrixSymbol('B', n, 1) C = Matrix(1, 3, [1, 2, 3]) D = Matrix(1, 3, [1, 3, 4]) assert pretty(DotProduct(A, B)) == "A*B" assert pretty(DotProduct(C, D)) == "[1 2 3]*[1 3 4]" assert upretty(DotProduct(A, B)) == "A⋅B" assert upretty(DotProduct(C, D)) == "[1 2 3]⋅[1 3 4]" def test_pretty_piecewise(): expr = Piecewise((x, x < 1), (x**2, True)) ascii_str = \ """\ /x for x < 1\n\ | \n\ < 2 \n\ |x otherwise\n\ \\ \ """ ucode_str = \ """\ ⎧x for x < 1\n\ ⎪ \n\ ⎨ 2 \n\ ⎪x otherwise\n\ ⎩ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -Piecewise((x, x < 1), (x**2, True)) ascii_str = \ """\ //x for x < 1\\\n\ || |\n\ -|< 2 |\n\ ||x otherwise|\n\ \\\\ /\ """ ucode_str = \ """\ ⎛⎧x for x < 1⎞\n\ ⎜⎪ ⎟\n\ -⎜⎨ 2 ⎟\n\ ⎜⎪x otherwise⎟\n\ ⎝⎩ ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = x + Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2), (y**2, x > 2), (1, True)) + 1 ascii_str = \ """\ //x \\ \n\ ||- for x < 2| \n\ ||y | \n\ //x for x > 0\\ || | \n\ x + |< | + |< 2 | + 1\n\ \\\\y otherwise/ ||y for x > 2| \n\ || | \n\ ||1 otherwise| \n\ \\\\ / \ """ ucode_str = \ """\ ⎛⎧x ⎞ \n\ ⎜⎪─ for x < 2⎟ \n\ ⎜⎪y ⎟ \n\ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\ x + ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\ ⎜⎪ ⎟ \n\ ⎜⎪1 otherwise⎟ \n\ ⎝⎩ ⎠ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = x - Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2), (y**2, x > 2), (1, True)) + 1 ascii_str = \ """\ //x \\ \n\ ||- for x < 2| \n\ ||y | \n\ //x for x > 0\\ || | \n\ x - |< | + |< 2 | + 1\n\ \\\\y otherwise/ ||y for x > 2| \n\ || | \n\ ||1 otherwise| \n\ \\\\ / \ """ ucode_str = \ """\ ⎛⎧x ⎞ \n\ ⎜⎪─ for x < 2⎟ \n\ ⎜⎪y ⎟ \n\ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\ x - ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\ ⎜⎪ ⎟ \n\ ⎜⎪1 otherwise⎟ \n\ ⎝⎩ ⎠ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = x*Piecewise((x, x > 0), (y, True)) ascii_str = \ """\ //x for x > 0\\\n\ x*|< |\n\ \\\\y otherwise/\ """ ucode_str = \ """\ ⎛⎧x for x > 0⎞\n\ x⋅⎜⎨ ⎟\n\ ⎝⎩y otherwise⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x > 2), (1, True)) ascii_str = \ """\ //x \\\n\ ||- for x < 2|\n\ ||y |\n\ //x for x > 0\\ || |\n\ |< |*|< 2 |\n\ \\\\y otherwise/ ||y for x > 2|\n\ || |\n\ ||1 otherwise|\n\ \\\\ /\ """ ucode_str = \ """\ ⎛⎧x ⎞\n\ ⎜⎪─ for x < 2⎟\n\ ⎜⎪y ⎟\n\ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\ ⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\ ⎜⎪ ⎟\n\ ⎜⎪1 otherwise⎟\n\ ⎝⎩ ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x > 2), (1, True)) ascii_str = \ """\ //x \\\n\ ||- for x < 2|\n\ ||y |\n\ //x for x > 0\\ || |\n\ -|< |*|< 2 |\n\ \\\\y otherwise/ ||y for x > 2|\n\ || |\n\ ||1 otherwise|\n\ \\\\ /\ """ ucode_str = \ """\ ⎛⎧x ⎞\n\ ⎜⎪─ for x < 2⎟\n\ ⎜⎪y ⎟\n\ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\ -⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\ ⎜⎪ ⎟\n\ ⎜⎪1 otherwise⎟\n\ ⎝⎩ ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Piecewise((0, Abs(1/y) < 1), (1, Abs(y) < 1), (y*meijerg(((2, 1), ()), ((), (1, 0)), 1/y), True)) ascii_str = \ """\ / 1 \n\ | 0 for --- < 1\n\ | |y| \n\ | \n\ < 1 for |y| < 1\n\ | \n\ | __0, 2 /2, 1 | 1\\ \n\ |y*/__ | | -| otherwise \n\ \\ \\_|2, 2 \\ 1, 0 | y/ \ """ ucode_str = \ """\ ⎧ 1 \n\ ⎪ 0 for ─── < 1\n\ ⎪ │y│ \n\ ⎪ \n\ ⎨ 1 for │y│ < 1\n\ ⎪ \n\ ⎪ ╭─╮0, 2 ⎛2, 1 │ 1⎞ \n\ ⎪y⋅│╶┐ ⎜ │ ─⎟ otherwise \n\ ⎩ ╰─╯2, 2 ⎝ 1, 0 │ y⎠ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # XXX: We have to use evaluate=False here because Piecewise._eval_power # denests the power. expr = Pow(Piecewise((x, x > 0), (y, True)), 2, evaluate=False) ascii_str = \ """\ 2\n\ //x for x > 0\\ \n\ |< | \n\ \\\\y otherwise/ \ """ ucode_str = \ """\ 2\n\ ⎛⎧x for x > 0⎞ \n\ ⎜⎨ ⎟ \n\ ⎝⎩y otherwise⎠ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_ITE(): expr = ITE(x, y, z) assert pretty(expr) == ( '/y for x \n' '< \n' '\\z otherwise' ) assert upretty(expr) == """\ ⎧y for x \n\ ⎨ \n\ ⎩z otherwise\ """ def test_pretty_seq(): expr = () ascii_str = \ """\ ()\ """ ucode_str = \ """\ ()\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = [] ascii_str = \ """\ []\ """ ucode_str = \ """\ []\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = {} expr_2 = {} ascii_str = \ """\ {}\ """ ucode_str = \ """\ {}\ """ assert pretty(expr) == ascii_str assert pretty(expr_2) == ascii_str assert upretty(expr) == ucode_str assert upretty(expr_2) == ucode_str expr = (1/x,) ascii_str = \ """\ 1 \n\ (-,)\n\ x \ """ ucode_str = \ """\ ⎛1 ⎞\n\ ⎜─,⎟\n\ ⎝x ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = [x**2, 1/x, x, y, sin(th)**2/cos(ph)**2] ascii_str = \ """\ 2 \n\ 2 1 sin (theta) \n\ [x , -, x, y, -----------]\n\ x 2 \n\ cos (phi) \ """ ucode_str = \ """\ ⎡ 2 ⎤\n\ ⎢ 2 1 sin (θ)⎥\n\ ⎢x , ─, x, y, ───────⎥\n\ ⎢ x 2 ⎥\n\ ⎣ cos (φ)⎦\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x**2, 1/x, x, y, sin(th)**2/cos(ph)**2) ascii_str = \ """\ 2 \n\ 2 1 sin (theta) \n\ (x , -, x, y, -----------)\n\ x 2 \n\ cos (phi) \ """ ucode_str = \ """\ ⎛ 2 ⎞\n\ ⎜ 2 1 sin (θ)⎟\n\ ⎜x , ─, x, y, ───────⎟\n\ ⎜ x 2 ⎟\n\ ⎝ cos (φ)⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Tuple(x**2, 1/x, x, y, sin(th)**2/cos(ph)**2) ascii_str = \ """\ 2 \n\ 2 1 sin (theta) \n\ (x , -, x, y, -----------)\n\ x 2 \n\ cos (phi) \ """ ucode_str = \ """\ ⎛ 2 ⎞\n\ ⎜ 2 1 sin (θ)⎟\n\ ⎜x , ─, x, y, ───────⎟\n\ ⎜ x 2 ⎟\n\ ⎝ cos (φ)⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = {x: sin(x)} expr_2 = Dict({x: sin(x)}) ascii_str = \ """\ {x: sin(x)}\ """ ucode_str = \ """\ {x: sin(x)}\ """ assert pretty(expr) == ascii_str assert pretty(expr_2) == ascii_str assert upretty(expr) == ucode_str assert upretty(expr_2) == ucode_str expr = {1/x: 1/y, x: sin(x)**2} expr_2 = Dict({1/x: 1/y, x: sin(x)**2}) ascii_str = \ """\ 1 1 2 \n\ {-: -, x: sin (x)}\n\ x y \ """ ucode_str = \ """\ ⎧1 1 2 ⎫\n\ ⎨─: ─, x: sin (x)⎬\n\ ⎩x y ⎭\ """ assert pretty(expr) == ascii_str assert pretty(expr_2) == ascii_str assert upretty(expr) == ucode_str assert upretty(expr_2) == ucode_str # There used to be a bug with pretty-printing sequences of even height. expr = [x**2] ascii_str = \ """\ 2 \n\ [x ]\ """ ucode_str = \ """\ ⎡ 2⎤\n\ ⎣x ⎦\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x**2,) ascii_str = \ """\ 2 \n\ (x ,)\ """ ucode_str = \ """\ ⎛ 2 ⎞\n\ ⎝x ,⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Tuple(x**2) ascii_str = \ """\ 2 \n\ (x ,)\ """ ucode_str = \ """\ ⎛ 2 ⎞\n\ ⎝x ,⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = {x**2: 1} expr_2 = Dict({x**2: 1}) ascii_str = \ """\ 2 \n\ {x : 1}\ """ ucode_str = \ """\ ⎧ 2 ⎫\n\ ⎨x : 1⎬\n\ ⎩ ⎭\ """ assert pretty(expr) == ascii_str assert pretty(expr_2) == ascii_str assert upretty(expr) == ucode_str assert upretty(expr_2) == ucode_str def test_any_object_in_sequence(): # Cf. issue 5306 b1 = Basic() b2 = Basic(Basic()) expr = [b2, b1] assert pretty(expr) == "[Basic(Basic()), Basic()]" assert upretty(expr) == "[Basic(Basic()), Basic()]" expr = {b2, b1} assert pretty(expr) == "{Basic(), Basic(Basic())}" assert upretty(expr) == "{Basic(), Basic(Basic())}" expr = {b2: b1, b1: b2} expr2 = Dict({b2: b1, b1: b2}) assert pretty(expr) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" assert pretty( expr2) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" assert upretty( expr) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" assert upretty( expr2) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" def test_print_builtin_set(): assert pretty(set()) == 'set()' assert upretty(set()) == 'set()' assert pretty(frozenset()) == 'frozenset()' assert upretty(frozenset()) == 'frozenset()' s1 = {1/x, x} s2 = frozenset(s1) assert pretty(s1) == \ """\ 1 \n\ {-, x} x \ """ assert upretty(s1) == \ """\ ⎧1 ⎫ ⎨─, x⎬ ⎩x ⎭\ """ assert pretty(s2) == \ """\ 1 \n\ frozenset({-, x}) x \ """ assert upretty(s2) == \ """\ ⎛⎧1 ⎫⎞ frozenset⎜⎨─, x⎬⎟ ⎝⎩x ⎭⎠\ """ def test_pretty_sets(): s = FiniteSet assert pretty(s(*[x*y, x**2])) == \ """\ 2 \n\ {x , x*y}\ """ assert pretty(s(*range(1, 6))) == "{1, 2, 3, 4, 5}" assert pretty(s(*range(1, 13))) == "{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}" assert pretty({x*y, x**2}) == \ """\ 2 \n\ {x , x*y}\ """ assert pretty(set(range(1, 6))) == "{1, 2, 3, 4, 5}" assert pretty(set(range(1, 13))) == \ "{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}" assert pretty(frozenset([x*y, x**2])) == \ """\ 2 \n\ frozenset({x , x*y})\ """ assert pretty(frozenset(range(1, 6))) == "frozenset({1, 2, 3, 4, 5})" assert pretty(frozenset(range(1, 13))) == \ "frozenset({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12})" assert pretty(Range(0, 3, 1)) == '{0, 1, 2}' ascii_str = '{0, 1, ..., 29}' ucode_str = '{0, 1, …, 29}' assert pretty(Range(0, 30, 1)) == ascii_str assert upretty(Range(0, 30, 1)) == ucode_str ascii_str = '{30, 29, ..., 2}' ucode_str = '{30, 29, …, 2}' assert pretty(Range(30, 1, -1)) == ascii_str assert upretty(Range(30, 1, -1)) == ucode_str ascii_str = '{0, 2, ...}' ucode_str = '{0, 2, …}' assert pretty(Range(0, oo, 2)) == ascii_str assert upretty(Range(0, oo, 2)) == ucode_str ascii_str = '{..., 2, 0}' ucode_str = '{…, 2, 0}' assert pretty(Range(oo, -2, -2)) == ascii_str assert upretty(Range(oo, -2, -2)) == ucode_str ascii_str = '{-2, -3, ...}' ucode_str = '{-2, -3, …}' assert pretty(Range(-2, -oo, -1)) == ascii_str assert upretty(Range(-2, -oo, -1)) == ucode_str def test_pretty_SetExpr(): iv = Interval(1, 3) se = SetExpr(iv) ascii_str = "SetExpr([1, 3])" ucode_str = "SetExpr([1, 3])" assert pretty(se) == ascii_str assert upretty(se) == ucode_str def test_pretty_ImageSet(): imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4}) ascii_str = '{x + y | x in {1, 2, 3}, y in {3, 4}}' ucode_str = '{x + y │ x ∊ {1, 2, 3}, y ∊ {3, 4}}' assert pretty(imgset) == ascii_str assert upretty(imgset) == ucode_str imgset = ImageSet(Lambda(((x, y),), x + y), ProductSet({1, 2, 3}, {3, 4})) ascii_str = '{x + y | (x, y) in {1, 2, 3} x {3, 4}}' ucode_str = '{x + y │ (x, y) ∊ {1, 2, 3} × {3, 4}}' assert pretty(imgset) == ascii_str assert upretty(imgset) == ucode_str imgset = ImageSet(Lambda(x, x**2), S.Naturals) ascii_str = '''\ 2 \n\ {x | x in Naturals}''' ucode_str = '''\ ⎧ 2 │ ⎫\n\ ⎨x │ x ∊ ℕ⎬\n\ ⎩ │ ⎭''' assert pretty(imgset) == ascii_str assert upretty(imgset) == ucode_str # TODO: The "x in N" parts below should be centered independently of the # 1/x**2 fraction imgset = ImageSet(Lambda(x, 1/x**2), S.Naturals) ascii_str = '''\ 1 \n\ {-- | x in Naturals} 2 \n\ x ''' ucode_str = '''\ ⎧1 │ ⎫\n\ ⎪── │ x ∊ ℕ⎪\n\ ⎨ 2 │ ⎬\n\ ⎪x │ ⎪\n\ ⎩ │ ⎭''' assert pretty(imgset) == ascii_str assert upretty(imgset) == ucode_str imgset = ImageSet(Lambda((x, y), 1/(x + y)**2), S.Naturals, S.Naturals) ascii_str = '''\ 1 \n\ {-------- | x in Naturals, y in Naturals} 2 \n\ (x + y) ''' ucode_str = '''\ ⎧ 1 │ ⎫ ⎪──────── │ x ∊ ℕ, y ∊ ℕ⎪ ⎨ 2 │ ⎬ ⎪(x + y) │ ⎪ ⎩ │ ⎭''' assert pretty(imgset) == ascii_str assert upretty(imgset) == ucode_str def test_pretty_ConditionSet(): ascii_str = '{x | x in (-oo, oo) and sin(x) = 0}' ucode_str = '{x │ x ∊ ℝ ∧ (sin(x) = 0)}' assert pretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ascii_str assert upretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ucode_str assert pretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == '{1}' assert upretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == '{1}' assert pretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == "EmptySet" assert upretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == "∅" assert pretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == '{2}' assert upretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == '{2}' condset = ConditionSet(x, 1/x**2 > 0) ascii_str = '''\ 1 \n\ {x | -- > 0} 2 \n\ x ''' ucode_str = '''\ ⎧ │ ⎛1 ⎞⎫ ⎪x │ ⎜── > 0⎟⎪ ⎨ │ ⎜ 2 ⎟⎬ ⎪ │ ⎝x ⎠⎪ ⎩ │ ⎭''' assert pretty(condset) == ascii_str assert upretty(condset) == ucode_str condset = ConditionSet(x, 1/x**2 > 0, S.Reals) ascii_str = '''\ 1 \n\ {x | x in (-oo, oo) and -- > 0} 2 \n\ x ''' ucode_str = '''\ ⎧ │ ⎛1 ⎞⎫ ⎪x │ x ∊ ℝ ∧ ⎜── > 0⎟⎪ ⎨ │ ⎜ 2 ⎟⎬ ⎪ │ ⎝x ⎠⎪ ⎩ │ ⎭''' assert pretty(condset) == ascii_str assert upretty(condset) == ucode_str def test_pretty_ComplexRegion(): from sympy.sets.fancysets import ComplexRegion cregion = ComplexRegion(Interval(3, 5)*Interval(4, 6)) ascii_str = '{x + y*I | x, y in [3, 5] x [4, 6]}' ucode_str = '{x + y⋅ⅈ │ x, y ∊ [3, 5] × [4, 6]}' assert pretty(cregion) == ascii_str assert upretty(cregion) == ucode_str cregion = ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True) ascii_str = '{r*(I*sin(theta) + cos(theta)) | r, theta in [0, 1] x [0, 2*pi)}' ucode_str = '{r⋅(ⅈ⋅sin(θ) + cos(θ)) │ r, θ ∊ [0, 1] × [0, 2⋅π)}' assert pretty(cregion) == ascii_str assert upretty(cregion) == ucode_str cregion = ComplexRegion(Interval(3, 1/a**2)*Interval(4, 6)) ascii_str = '''\ 1 \n\ {x + y*I | x, y in [3, --] x [4, 6]} 2 \n\ a ''' ucode_str = '''\ ⎧ │ ⎡ 1 ⎤ ⎫ ⎪x + y⋅ⅈ │ x, y ∊ ⎢3, ──⎥ × [4, 6]⎪ ⎨ │ ⎢ 2⎥ ⎬ ⎪ │ ⎣ a ⎦ ⎪ ⎩ │ ⎭''' assert pretty(cregion) == ascii_str assert upretty(cregion) == ucode_str cregion = ComplexRegion(Interval(0, 1/a**2)*Interval(0, 2*pi), polar=True) ascii_str = '''\ 1 \n\ {r*(I*sin(theta) + cos(theta)) | r, theta in [0, --] x [0, 2*pi)} 2 \n\ a ''' ucode_str = '''\ ⎧ │ ⎡ 1 ⎤ ⎫ ⎪r⋅(ⅈ⋅sin(θ) + cos(θ)) │ r, θ ∊ ⎢0, ──⎥ × [0, 2⋅π)⎪ ⎨ │ ⎢ 2⎥ ⎬ ⎪ │ ⎣ a ⎦ ⎪ ⎩ │ ⎭''' assert pretty(cregion) == ascii_str assert upretty(cregion) == ucode_str def test_pretty_Union_issue_10414(): a, b = Interval(2, 3), Interval(4, 7) ucode_str = '[2, 3] ∪ [4, 7]' ascii_str = '[2, 3] U [4, 7]' assert upretty(Union(a, b)) == ucode_str assert pretty(Union(a, b)) == ascii_str def test_pretty_Intersection_issue_10414(): x, y, z, w = symbols('x, y, z, w') a, b = Interval(x, y), Interval(z, w) ucode_str = '[x, y] ∩ [z, w]' ascii_str = '[x, y] n [z, w]' assert upretty(Intersection(a, b)) == ucode_str assert pretty(Intersection(a, b)) == ascii_str def test_ProductSet_exponent(): ucode_str = ' 1\n[0, 1] ' assert upretty(Interval(0, 1)**1) == ucode_str ucode_str = ' 2\n[0, 1] ' assert upretty(Interval(0, 1)**2) == ucode_str def test_ProductSet_parenthesis(): ucode_str = '([4, 7] × {1, 2}) ∪ ([2, 3] × [4, 7])' a, b = Interval(2, 3), Interval(4, 7) assert upretty(Union(a*b, b*FiniteSet(1, 2))) == ucode_str def test_ProductSet_prod_char_issue_10413(): ascii_str = '[2, 3] x [4, 7]' ucode_str = '[2, 3] × [4, 7]' a, b = Interval(2, 3), Interval(4, 7) assert pretty(a*b) == ascii_str assert upretty(a*b) == ucode_str def test_pretty_sequences(): s1 = SeqFormula(a**2, (0, oo)) s2 = SeqPer((1, 2)) ascii_str = '[0, 1, 4, 9, ...]' ucode_str = '[0, 1, 4, 9, …]' assert pretty(s1) == ascii_str assert upretty(s1) == ucode_str ascii_str = '[1, 2, 1, 2, ...]' ucode_str = '[1, 2, 1, 2, …]' assert pretty(s2) == ascii_str assert upretty(s2) == ucode_str s3 = SeqFormula(a**2, (0, 2)) s4 = SeqPer((1, 2), (0, 2)) ascii_str = '[0, 1, 4]' ucode_str = '[0, 1, 4]' assert pretty(s3) == ascii_str assert upretty(s3) == ucode_str ascii_str = '[1, 2, 1]' ucode_str = '[1, 2, 1]' assert pretty(s4) == ascii_str assert upretty(s4) == ucode_str s5 = SeqFormula(a**2, (-oo, 0)) s6 = SeqPer((1, 2), (-oo, 0)) ascii_str = '[..., 9, 4, 1, 0]' ucode_str = '[…, 9, 4, 1, 0]' assert pretty(s5) == ascii_str assert upretty(s5) == ucode_str ascii_str = '[..., 2, 1, 2, 1]' ucode_str = '[…, 2, 1, 2, 1]' assert pretty(s6) == ascii_str assert upretty(s6) == ucode_str ascii_str = '[1, 3, 5, 11, ...]' ucode_str = '[1, 3, 5, 11, …]' assert pretty(SeqAdd(s1, s2)) == ascii_str assert upretty(SeqAdd(s1, s2)) == ucode_str ascii_str = '[1, 3, 5]' ucode_str = '[1, 3, 5]' assert pretty(SeqAdd(s3, s4)) == ascii_str assert upretty(SeqAdd(s3, s4)) == ucode_str ascii_str = '[..., 11, 5, 3, 1]' ucode_str = '[…, 11, 5, 3, 1]' assert pretty(SeqAdd(s5, s6)) == ascii_str assert upretty(SeqAdd(s5, s6)) == ucode_str ascii_str = '[0, 2, 4, 18, ...]' ucode_str = '[0, 2, 4, 18, …]' assert pretty(SeqMul(s1, s2)) == ascii_str assert upretty(SeqMul(s1, s2)) == ucode_str ascii_str = '[0, 2, 4]' ucode_str = '[0, 2, 4]' assert pretty(SeqMul(s3, s4)) == ascii_str assert upretty(SeqMul(s3, s4)) == ucode_str ascii_str = '[..., 18, 4, 2, 0]' ucode_str = '[…, 18, 4, 2, 0]' assert pretty(SeqMul(s5, s6)) == ascii_str assert upretty(SeqMul(s5, s6)) == ucode_str # Sequences with symbolic limits, issue 12629 s7 = SeqFormula(a**2, (a, 0, x)) raises(NotImplementedError, lambda: pretty(s7)) raises(NotImplementedError, lambda: upretty(s7)) b = Symbol('b') s8 = SeqFormula(b*a**2, (a, 0, 2)) ascii_str = '[0, b, 4*b]' ucode_str = '[0, b, 4⋅b]' assert pretty(s8) == ascii_str assert upretty(s8) == ucode_str def test_pretty_FourierSeries(): f = fourier_series(x, (x, -pi, pi)) ascii_str = \ """\ 2*sin(3*x) \n\ 2*sin(x) - sin(2*x) + ---------- + ...\n\ 3 \ """ ucode_str = \ """\ 2⋅sin(3⋅x) \n\ 2⋅sin(x) - sin(2⋅x) + ────────── + …\n\ 3 \ """ assert pretty(f) == ascii_str assert upretty(f) == ucode_str def test_pretty_FormalPowerSeries(): f = fps(log(1 + x)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ -k k \n\ \\ -(-1) *x \n\ / -----------\n\ / k \n\ /___, \n\ k = 1 \ """ ucode_str = \ """\ ∞ \n\ ____ \n\ ╲ \n\ ╲ -k k \n\ ╲ -(-1) ⋅x \n\ ╱ ───────────\n\ ╱ k \n\ ╱ \n\ ‾‾‾‾ \n\ k = 1 \ """ assert pretty(f) == ascii_str assert upretty(f) == ucode_str def test_pretty_limits(): expr = Limit(x, x, oo) ascii_str = \ """\ lim x\n\ x->oo \ """ ucode_str = \ """\ lim x\n\ x─→∞ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(x**2, x, 0) ascii_str = \ """\ 2\n\ lim x \n\ x->0+ \ """ ucode_str = \ """\ 2\n\ lim x \n\ x─→0⁺ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(1/x, x, 0) ascii_str = \ """\ 1\n\ lim -\n\ x->0+x\ """ ucode_str = \ """\ 1\n\ lim ─\n\ x─→0⁺x\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(sin(x)/x, x, 0) ascii_str = \ """\ /sin(x)\\\n\ lim |------|\n\ x->0+\\ x /\ """ ucode_str = \ """\ ⎛sin(x)⎞\n\ lim ⎜──────⎟\n\ x─→0⁺⎝ x ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(sin(x)/x, x, 0, "-") ascii_str = \ """\ /sin(x)\\\n\ lim |------|\n\ x->0-\\ x /\ """ ucode_str = \ """\ ⎛sin(x)⎞\n\ lim ⎜──────⎟\n\ x─→0⁻⎝ x ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(x + sin(x), x, 0) ascii_str = \ """\ lim (x + sin(x))\n\ x->0+ \ """ ucode_str = \ """\ lim (x + sin(x))\n\ x─→0⁺ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(x, x, 0)**2 ascii_str = \ """\ 2\n\ / lim x\\ \n\ \\x->0+ / \ """ ucode_str = \ """\ 2\n\ ⎛ lim x⎞ \n\ ⎝x─→0⁺ ⎠ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(x*Limit(y/2,y,0), x, 0) ascii_str = \ """\ / /y\\\\\n\ lim |x* lim |-||\n\ x->0+\\ y->0+\\2//\ """ ucode_str = \ """\ ⎛ ⎛y⎞⎞\n\ lim ⎜x⋅ lim ⎜─⎟⎟\n\ x─→0⁺⎝ y─→0⁺⎝2⎠⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2*Limit(x*Limit(y/2,y,0), x, 0) ascii_str = \ """\ / /y\\\\\n\ 2* lim |x* lim |-||\n\ x->0+\\ y->0+\\2//\ """ ucode_str = \ """\ ⎛ ⎛y⎞⎞\n\ 2⋅ lim ⎜x⋅ lim ⎜─⎟⎟\n\ x─→0⁺⎝ y─→0⁺⎝2⎠⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(sin(x), x, 0, dir='+-') ascii_str = \ """\ lim sin(x)\n\ x->0 \ """ ucode_str = \ """\ lim sin(x)\n\ x─→0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_ComplexRootOf(): expr = rootof(x**5 + 11*x - 2, 0) ascii_str = \ """\ / 5 \\\n\ CRootOf\\x + 11*x - 2, 0/\ """ ucode_str = \ """\ ⎛ 5 ⎞\n\ CRootOf⎝x + 11⋅x - 2, 0⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_RootSum(): expr = RootSum(x**5 + 11*x - 2, auto=False) ascii_str = \ """\ / 5 \\\n\ RootSum\\x + 11*x - 2/\ """ ucode_str = \ """\ ⎛ 5 ⎞\n\ RootSum⎝x + 11⋅x - 2⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = RootSum(x**5 + 11*x - 2, Lambda(z, exp(z))) ascii_str = \ """\ / 5 z\\\n\ RootSum\\x + 11*x - 2, z -> e /\ """ ucode_str = \ """\ ⎛ 5 z⎞\n\ RootSum⎝x + 11⋅x - 2, z ↦ ℯ ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_GroebnerBasis(): expr = groebner([], x, y) ascii_str = \ """\ GroebnerBasis([], x, y, domain=ZZ, order=lex)\ """ ucode_str = \ """\ GroebnerBasis([], x, y, domain=ℤ, order=lex)\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1] expr = groebner(F, x, y, order='grlex') ascii_str = \ """\ /[ 2 2 ] \\\n\ GroebnerBasis\\[x - x - 3*y + 1, y - 2*x + y - 1], x, y, domain=ZZ, order=grlex/\ """ ucode_str = \ """\ ⎛⎡ 2 2 ⎤ ⎞\n\ GroebnerBasis⎝⎣x - x - 3⋅y + 1, y - 2⋅x + y - 1⎦, x, y, domain=ℤ, order=grlex⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = expr.fglm('lex') ascii_str = \ """\ /[ 2 4 3 2 ] \\\n\ GroebnerBasis\\[2*x - y - y + 1, y + 2*y - 3*y - 16*y + 7], x, y, domain=ZZ, order=lex/\ """ ucode_str = \ """\ ⎛⎡ 2 4 3 2 ⎤ ⎞\n\ GroebnerBasis⎝⎣2⋅x - y - y + 1, y + 2⋅y - 3⋅y - 16⋅y + 7⎦, x, y, domain=ℤ, order=lex⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_UniversalSet(): assert pretty(S.UniversalSet) == "UniversalSet" assert upretty(S.UniversalSet) == '𝕌' def test_pretty_Boolean(): expr = Not(x, evaluate=False) assert pretty(expr) == "Not(x)" assert upretty(expr) == "¬x" expr = And(x, y) assert pretty(expr) == "And(x, y)" assert upretty(expr) == "x ∧ y" expr = Or(x, y) assert pretty(expr) == "Or(x, y)" assert upretty(expr) == "x ∨ y" syms = symbols('a:f') expr = And(*syms) assert pretty(expr) == "And(a, b, c, d, e, f)" assert upretty(expr) == "a ∧ b ∧ c ∧ d ∧ e ∧ f" expr = Or(*syms) assert pretty(expr) == "Or(a, b, c, d, e, f)" assert upretty(expr) == "a ∨ b ∨ c ∨ d ∨ e ∨ f" expr = Xor(x, y, evaluate=False) assert pretty(expr) == "Xor(x, y)" assert upretty(expr) == "x ⊻ y" expr = Nand(x, y, evaluate=False) assert pretty(expr) == "Nand(x, y)" assert upretty(expr) == "x ⊼ y" expr = Nor(x, y, evaluate=False) assert pretty(expr) == "Nor(x, y)" assert upretty(expr) == "x ⊽ y" expr = Implies(x, y, evaluate=False) assert pretty(expr) == "Implies(x, y)" assert upretty(expr) == "x → y" # don't sort args expr = Implies(y, x, evaluate=False) assert pretty(expr) == "Implies(y, x)" assert upretty(expr) == "y → x" expr = Equivalent(x, y, evaluate=False) assert pretty(expr) == "Equivalent(x, y)" assert upretty(expr) == "x ⇔ y" expr = Equivalent(y, x, evaluate=False) assert pretty(expr) == "Equivalent(x, y)" assert upretty(expr) == "x ⇔ y" def test_pretty_Domain(): expr = FF(23) assert pretty(expr) == "GF(23)" assert upretty(expr) == "ℤ₂₃" expr = ZZ assert pretty(expr) == "ZZ" assert upretty(expr) == "ℤ" expr = QQ assert pretty(expr) == "QQ" assert upretty(expr) == "ℚ" expr = RR assert pretty(expr) == "RR" assert upretty(expr) == "ℝ" expr = QQ[x] assert pretty(expr) == "QQ[x]" assert upretty(expr) == "ℚ[x]" expr = QQ[x, y] assert pretty(expr) == "QQ[x, y]" assert upretty(expr) == "ℚ[x, y]" expr = ZZ.frac_field(x) assert pretty(expr) == "ZZ(x)" assert upretty(expr) == "ℤ(x)" expr = ZZ.frac_field(x, y) assert pretty(expr) == "ZZ(x, y)" assert upretty(expr) == "ℤ(x, y)" expr = QQ.poly_ring(x, y, order=grlex) assert pretty(expr) == "QQ[x, y, order=grlex]" assert upretty(expr) == "ℚ[x, y, order=grlex]" expr = QQ.poly_ring(x, y, order=ilex) assert pretty(expr) == "QQ[x, y, order=ilex]" assert upretty(expr) == "ℚ[x, y, order=ilex]" def test_pretty_prec(): assert xpretty(S("0.3"), full_prec=True, wrap_line=False) == "0.300000000000000" assert xpretty(S("0.3"), full_prec="auto", wrap_line=False) == "0.300000000000000" assert xpretty(S("0.3"), full_prec=False, wrap_line=False) == "0.3" assert xpretty(S("0.3")*x, full_prec=True, use_unicode=False, wrap_line=False) in [ "0.300000000000000*x", "x*0.300000000000000" ] assert xpretty(S("0.3")*x, full_prec="auto", use_unicode=False, wrap_line=False) in [ "0.3*x", "x*0.3" ] assert xpretty(S("0.3")*x, full_prec=False, use_unicode=False, wrap_line=False) in [ "0.3*x", "x*0.3" ] def test_pprint(): import sys from io import StringIO fd = StringIO() sso = sys.stdout sys.stdout = fd try: pprint(pi, use_unicode=False, wrap_line=False) finally: sys.stdout = sso assert fd.getvalue() == 'pi\n' def test_pretty_class(): """Test that the printer dispatcher correctly handles classes.""" class C: pass # C has no .__class__ and this was causing problems class D: pass assert pretty( C ) == str( C ) assert pretty( D ) == str( D ) def test_pretty_no_wrap_line(): huge_expr = 0 for i in range(20): huge_expr += i*sin(i + x) assert xpretty(huge_expr ).find('\n') != -1 assert xpretty(huge_expr, wrap_line=False).find('\n') == -1 def test_settings(): raises(TypeError, lambda: pretty(S(4), method="garbage")) def test_pretty_sum(): from sympy.abc import x, a, b, k, m, n expr = Sum(k**k, (k, 0, n)) ascii_str = \ """\ n \n\ ___ \n\ \\ ` \n\ \\ k\n\ / k \n\ /__, \n\ k = 0 \ """ ucode_str = \ """\ n \n\ ___ \n\ ╲ \n\ ╲ k\n\ ╱ k \n\ ╱ \n\ ‾‾‾ \n\ k = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**k, (k, oo, n)) ascii_str = \ """\ n \n\ ___ \n\ \\ ` \n\ \\ k\n\ / k \n\ /__, \n\ k = oo \ """ ucode_str = \ """\ n \n\ ___ \n\ ╲ \n\ ╲ k\n\ ╱ k \n\ ╱ \n\ ‾‾‾ \n\ k = ∞ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**(Integral(x**n, (x, -oo, oo))), (k, 0, n**n)) ascii_str = \ """\ n \n\ n \n\ ______ \n\ \\ ` \n\ \\ oo \n\ \\ / \n\ \\ | \n\ \\ | n \n\ ) | x dx\n\ / | \n\ / / \n\ / -oo \n\ / k \n\ /_____, \n\ k = 0 \ """ ucode_str = \ """\ n \n\ n \n\ ______ \n\ ╲ \n\ ╲ \n\ ╲ ∞ \n\ ╲ ⌠ \n\ ╲ ⎮ n \n\ ╱ ⎮ x dx\n\ ╱ ⌡ \n\ ╱ -∞ \n\ ╱ k \n\ ╱ \n\ ‾‾‾‾‾‾ \n\ k = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**( Integral(x**n, (x, -oo, oo))), (k, 0, Integral(x**x, (x, -oo, oo)))) ascii_str = \ """\ oo \n\ / \n\ | \n\ | x \n\ | x dx \n\ | \n\ / \n\ -oo \n\ ______ \n\ \\ ` \n\ \\ oo \n\ \\ / \n\ \\ | \n\ \\ | n \n\ ) | x dx\n\ / | \n\ / / \n\ / -oo \n\ / k \n\ /_____, \n\ k = 0 \ """ ucode_str = \ """\ ∞ \n\ ⌠ \n\ ⎮ x \n\ ⎮ x dx \n\ ⌡ \n\ -∞ \n\ ______ \n\ ╲ \n\ ╲ \n\ ╲ ∞ \n\ ╲ ⌠ \n\ ╲ ⎮ n \n\ ╱ ⎮ x dx\n\ ╱ ⌡ \n\ ╱ -∞ \n\ ╱ k \n\ ╱ \n\ ‾‾‾‾‾‾ \n\ k = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**(Integral(x**n, (x, -oo, oo))), ( k, x + n + x**2 + n**2 + (x/n) + (1/x), Integral(x**x, (x, -oo, oo)))) ascii_str = \ """\ oo \n\ / \n\ | \n\ | x \n\ | x dx \n\ | \n\ / \n\ -oo \n\ ______ \n\ \\ ` \n\ \\ oo \n\ \\ / \n\ \\ | \n\ \\ | n \n\ ) | x dx\n\ / | \n\ / / \n\ / -oo \n\ / k \n\ /_____, \n\ 2 2 1 x \n\ k = n + n + x + x + - + - \n\ x n \ """ ucode_str = \ """\ ∞ \n\ ⌠ \n\ ⎮ x \n\ ⎮ x dx \n\ ⌡ \n\ -∞ \n\ ______ \n\ ╲ \n\ ╲ \n\ ╲ ∞ \n\ ╲ ⌠ \n\ ╲ ⎮ n \n\ ╱ ⎮ x dx\n\ ╱ ⌡ \n\ ╱ -∞ \n\ ╱ k \n\ ╱ \n\ ‾‾‾‾‾‾ \n\ 2 2 1 x \n\ k = n + n + x + x + ─ + ─ \n\ x n \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**( Integral(x**n, (x, -oo, oo))), (k, 0, x + n + x**2 + n**2 + (x/n) + (1/x))) ascii_str = \ """\ 2 2 1 x \n\ n + n + x + x + - + - \n\ x n \n\ ______ \n\ \\ ` \n\ \\ oo \n\ \\ / \n\ \\ | \n\ \\ | n \n\ ) | x dx\n\ / | \n\ / / \n\ / -oo \n\ / k \n\ /_____, \n\ k = 0 \ """ ucode_str = \ """\ 2 2 1 x \n\ n + n + x + x + ─ + ─ \n\ x n \n\ ______ \n\ ╲ \n\ ╲ \n\ ╲ ∞ \n\ ╲ ⌠ \n\ ╲ ⎮ n \n\ ╱ ⎮ x dx\n\ ╱ ⌡ \n\ ╱ -∞ \n\ ╱ k \n\ ╱ \n\ ‾‾‾‾‾‾ \n\ k = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(x, (x, 0, oo)) ascii_str = \ """\ oo \n\ __ \n\ \\ ` \n\ ) x\n\ /_, \n\ x = 0 \ """ ucode_str = \ """\ ∞ \n\ ___ \n\ ╲ \n\ ╲ \n\ ╱ x\n\ ╱ \n\ ‾‾‾ \n\ x = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(x**2, (x, 0, oo)) ascii_str = \ """\ oo \n\ ___ \n\ \\ ` \n\ \\ 2\n\ / x \n\ /__, \n\ x = 0 \ """ ucode_str = \ """\ ∞ \n\ ___ \n\ ╲ \n\ ╲ 2\n\ ╱ x \n\ ╱ \n\ ‾‾‾ \n\ x = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(x/2, (x, 0, oo)) ascii_str = \ """\ oo \n\ ___ \n\ \\ ` \n\ \\ x\n\ ) -\n\ / 2\n\ /__, \n\ x = 0 \ """ ucode_str = \ """\ ∞ \n\ ____ \n\ ╲ \n\ ╲ \n\ ╲ x\n\ ╱ ─\n\ ╱ 2\n\ ╱ \n\ ‾‾‾‾ \n\ x = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(x**3/2, (x, 0, oo)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ 3\n\ \\ x \n\ / --\n\ / 2 \n\ /___, \n\ x = 0 \ """ ucode_str = \ """\ ∞ \n\ ____ \n\ ╲ \n\ ╲ 3\n\ ╲ x \n\ ╱ ──\n\ ╱ 2 \n\ ╱ \n\ ‾‾‾‾ \n\ x = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum((x**3*y**(x/2))**n, (x, 0, oo)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ n\n\ \\ / x\\ \n\ ) | -| \n\ / | 3 2| \n\ / \\x *y / \n\ /___, \n\ x = 0 \ """ ucode_str = \ """\ ∞ \n\ _____ \n\ ╲ \n\ ╲ \n\ ╲ n\n\ ╲ ⎛ x⎞ \n\ ╱ ⎜ ─⎟ \n\ ╱ ⎜ 3 2⎟ \n\ ╱ ⎝x ⋅y ⎠ \n\ ╱ \n\ ‾‾‾‾‾ \n\ x = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(1/x**2, (x, 0, oo)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ 1 \n\ \\ --\n\ / 2\n\ / x \n\ /___, \n\ x = 0 \ """ ucode_str = \ """\ ∞ \n\ ____ \n\ ╲ \n\ ╲ 1 \n\ ╲ ──\n\ ╱ 2\n\ ╱ x \n\ ╱ \n\ ‾‾‾‾ \n\ x = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(1/y**(a/b), (x, 0, oo)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ -a \n\ \\ ---\n\ / b \n\ / y \n\ /___, \n\ x = 0 \ """ ucode_str = \ """\ ∞ \n\ ____ \n\ ╲ \n\ ╲ -a \n\ ╲ ───\n\ ╱ b \n\ ╱ y \n\ ╱ \n\ ‾‾‾‾ \n\ x = 0 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(1/y**(a/b), (x, 0, oo), (y, 1, 2)) ascii_str = \ """\ 2 oo \n\ ____ ____ \n\ \\ ` \\ ` \n\ \\ \\ -a\n\ \\ \\ --\n\ / / b \n\ / / y \n\ /___, /___, \n\ y = 1 x = 0 \ """ ucode_str = \ """\ 2 ∞ \n\ ____ ____ \n\ ╲ ╲ \n\ ╲ ╲ -a\n\ ╲ ╲ ──\n\ ╱ ╱ b \n\ ╱ ╱ y \n\ ╱ ╱ \n\ ‾‾‾‾ ‾‾‾‾ \n\ y = 1 x = 0 \ """ expr = Sum(1/(1 + 1/( 1 + 1/k)) + 1, (k, 111, 1 + 1/n), (k, 1/(1 + m), oo)) + 1/(1 + 1/k) ascii_str = \ """\ 1 \n\ 1 + - \n\ oo n \n\ _____ _____ \n\ \\ ` \\ ` \n\ \\ \\ / 1 \\ \n\ \\ \\ |1 + ---------| \n\ \\ \\ | 1 | 1 \n\ ) ) | 1 + -----| + -----\n\ / / | 1| 1\n\ / / | 1 + -| 1 + -\n\ / / \\ k/ k\n\ /____, /____, \n\ 1 k = 111 \n\ k = ----- \n\ m + 1 \ """ ucode_str = \ """\ 1 \n\ 1 + ─ \n\ ∞ n \n\ ______ ______ \n\ ╲ ╲ \n\ ╲ ╲ \n\ ╲ ╲ ⎛ 1 ⎞ \n\ ╲ ╲ ⎜1 + ─────────⎟ \n\ ╲ ╲ ⎜ 1 ⎟ 1 \n\ ╱ ╱ ⎜ 1 + ─────⎟ + ─────\n\ ╱ ╱ ⎜ 1⎟ 1\n\ ╱ ╱ ⎜ 1 + ─⎟ 1 + ─\n\ ╱ ╱ ⎝ k⎠ k\n\ ╱ ╱ \n\ ‾‾‾‾‾‾ ‾‾‾‾‾‾ \n\ 1 k = 111 \n\ k = ───── \n\ m + 1 \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_units(): expr = joule ascii_str1 = \ """\ 2\n\ kilogram*meter \n\ ---------------\n\ 2 \n\ second \ """ unicode_str1 = \ """\ 2\n\ kilogram⋅meter \n\ ───────────────\n\ 2 \n\ second \ """ ascii_str2 = \ """\ 2\n\ 3*x*y*kilogram*meter \n\ ---------------------\n\ 2 \n\ second \ """ unicode_str2 = \ """\ 2\n\ 3⋅x⋅y⋅kilogram⋅meter \n\ ─────────────────────\n\ 2 \n\ second \ """ from sympy.physics.units import kg, m, s assert upretty(expr) == "joule" assert pretty(expr) == "joule" assert upretty(expr.convert_to(kg*m**2/s**2)) == unicode_str1 assert pretty(expr.convert_to(kg*m**2/s**2)) == ascii_str1 assert upretty(3*kg*x*m**2*y/s**2) == unicode_str2 assert pretty(3*kg*x*m**2*y/s**2) == ascii_str2 def test_pretty_Subs(): f = Function('f') expr = Subs(f(x), x, ph**2) ascii_str = \ """\ (f(x))| 2\n\ |x=phi \ """ unicode_str = \ """\ (f(x))│ 2\n\ │x=φ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Subs(f(x).diff(x), x, 0) ascii_str = \ """\ /d \\| \n\ |--(f(x))|| \n\ \\dx /|x=0\ """ unicode_str = \ """\ ⎛d ⎞│ \n\ ⎜──(f(x))⎟│ \n\ ⎝dx ⎠│x=0\ """ assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2))) ascii_str = \ """\ /d \\| \n\ |--(f(x))|| \n\ |dx || \n\ |--------|| \n\ \\ y /|x=0, y=1/2\ """ unicode_str = \ """\ ⎛d ⎞│ \n\ ⎜──(f(x))⎟│ \n\ ⎜dx ⎟│ \n\ ⎜────────⎟│ \n\ ⎝ y ⎠│x=0, y=1/2\ """ assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str def test_gammas(): assert upretty(lowergamma(x, y)) == "γ(x, y)" assert upretty(uppergamma(x, y)) == "Γ(x, y)" assert xpretty(gamma(x), use_unicode=True) == 'Γ(x)' assert xpretty(gamma, use_unicode=True) == 'Γ' assert xpretty(symbols('gamma', cls=Function)(x), use_unicode=True) == 'γ(x)' assert xpretty(symbols('gamma', cls=Function), use_unicode=True) == 'γ' def test_beta(): assert xpretty(beta(x,y), use_unicode=True) == 'Β(x, y)' assert xpretty(beta(x,y), use_unicode=False) == 'B(x, y)' assert xpretty(beta, use_unicode=True) == 'Β' assert xpretty(beta, use_unicode=False) == 'B' mybeta = Function('beta') assert xpretty(mybeta(x), use_unicode=True) == 'β(x)' assert xpretty(mybeta(x, y, z), use_unicode=False) == 'beta(x, y, z)' assert xpretty(mybeta, use_unicode=True) == 'β' # test that notation passes to subclasses of the same name only def test_function_subclass_different_name(): class mygamma(gamma): pass assert xpretty(mygamma, use_unicode=True) == r"mygamma" assert xpretty(mygamma(x), use_unicode=True) == r"mygamma(x)" def test_SingularityFunction(): assert xpretty(SingularityFunction(x, 0, n), use_unicode=True) == ( """\ n\n\ \ """) assert xpretty(SingularityFunction(x, 1, n), use_unicode=True) == ( """\ n\n\ \ """) assert xpretty(SingularityFunction(x, -1, n), use_unicode=True) == ( """\ n\n\ \ """) assert xpretty(SingularityFunction(x, a, n), use_unicode=True) == ( """\ n\n\ <-a + x> \ """) assert xpretty(SingularityFunction(x, y, n), use_unicode=True) == ( """\ n\n\ \ """) assert xpretty(SingularityFunction(x, 0, n), use_unicode=False) == ( """\ n\n\ \ """) assert xpretty(SingularityFunction(x, 1, n), use_unicode=False) == ( """\ n\n\ \ """) assert xpretty(SingularityFunction(x, -1, n), use_unicode=False) == ( """\ n\n\ \ """) assert xpretty(SingularityFunction(x, a, n), use_unicode=False) == ( """\ n\n\ <-a + x> \ """) assert xpretty(SingularityFunction(x, y, n), use_unicode=False) == ( """\ n\n\ \ """) def test_deltas(): assert xpretty(DiracDelta(x), use_unicode=True) == 'δ(x)' assert xpretty(DiracDelta(x, 1), use_unicode=True) == \ """\ (1) \n\ δ (x)\ """ assert xpretty(x*DiracDelta(x, 1), use_unicode=True) == \ """\ (1) \n\ x⋅δ (x)\ """ def test_hyper(): expr = hyper((), (), z) ucode_str = \ """\ ┌─ ⎛ │ ⎞\n\ ├─ ⎜ │ z⎟\n\ 0╵ 0 ⎝ │ ⎠\ """ ascii_str = \ """\ _ \n\ |_ / | \\\n\ | | | z|\n\ 0 0 \\ | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper((), (1,), x) ucode_str = \ """\ ┌─ ⎛ │ ⎞\n\ ├─ ⎜ │ x⎟\n\ 0╵ 1 ⎝1 │ ⎠\ """ ascii_str = \ """\ _ \n\ |_ / | \\\n\ | | | x|\n\ 0 1 \\1 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper([2], [1], x) ucode_str = \ """\ ┌─ ⎛2 │ ⎞\n\ ├─ ⎜ │ x⎟\n\ 1╵ 1 ⎝1 │ ⎠\ """ ascii_str = \ """\ _ \n\ |_ /2 | \\\n\ | | | x|\n\ 1 1 \\1 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper((pi/3, -2*k), (3, 4, 5, -3), x) ucode_str = \ """\ ⎛ π │ ⎞\n\ ┌─ ⎜ ─, -2⋅k │ ⎟\n\ ├─ ⎜ 3 │ x⎟\n\ 2╵ 4 ⎜ │ ⎟\n\ ⎝3, 4, 5, -3 │ ⎠\ """ ascii_str = \ """\ \n\ _ / pi | \\\n\ |_ | --, -2*k | |\n\ | | 3 | x|\n\ 2 4 | | |\n\ \\3, 4, 5, -3 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper((pi, S('2/3'), -2*k), (3, 4, 5, -3), x**2) ucode_str = \ """\ ┌─ ⎛π, 2/3, -2⋅k │ 2⎞\n\ ├─ ⎜ │ x ⎟\n\ 3╵ 4 ⎝3, 4, 5, -3 │ ⎠\ """ ascii_str = \ """\ _ \n\ |_ /pi, 2/3, -2*k | 2\\\n\ | | | x |\n\ 3 4 \\ 3, 4, 5, -3 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper([1, 2], [3, 4], 1/(1/(1/(1/x + 1) + 1) + 1)) ucode_str = \ """\ ⎛ │ 1 ⎞\n\ ⎜ │ ─────────────⎟\n\ ⎜ │ 1 ⎟\n\ ┌─ ⎜1, 2 │ 1 + ─────────⎟\n\ ├─ ⎜ │ 1 ⎟\n\ 2╵ 2 ⎜3, 4 │ 1 + ─────⎟\n\ ⎜ │ 1⎟\n\ ⎜ │ 1 + ─⎟\n\ ⎝ │ x⎠\ """ ascii_str = \ """\ \n\ / | 1 \\\n\ | | -------------|\n\ _ | | 1 |\n\ |_ |1, 2 | 1 + ---------|\n\ | | | 1 |\n\ 2 2 |3, 4 | 1 + -----|\n\ | | 1|\n\ | | 1 + -|\n\ \\ | x/\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_meijerg(): expr = meijerg([pi, pi, x], [1], [0, 1], [1, 2, 3], z) ucode_str = \ """\ ╭─╮2, 3 ⎛π, π, x 1 │ ⎞\n\ │╶┐ ⎜ │ z⎟\n\ ╰─╯4, 5 ⎝ 0, 1 1, 2, 3 │ ⎠\ """ ascii_str = \ """\ __2, 3 /pi, pi, x 1 | \\\n\ /__ | | z|\n\ \\_|4, 5 \\ 0, 1 1, 2, 3 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = meijerg([1, pi/7], [2, pi, 5], [], [], z**2) ucode_str = \ """\ ⎛ π │ ⎞\n\ ╭─╮0, 2 ⎜1, ─ 2, π, 5 │ 2⎟\n\ │╶┐ ⎜ 7 │ z ⎟\n\ ╰─╯5, 0 ⎜ │ ⎟\n\ ⎝ │ ⎠\ """ ascii_str = \ """\ / pi | \\\n\ __0, 2 |1, -- 2, pi, 5 | 2|\n\ /__ | 7 | z |\n\ \\_|5, 0 | | |\n\ \\ | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ucode_str = \ """\ ╭─╮ 1, 10 ⎛1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 │ ⎞\n\ │╶┐ ⎜ │ z⎟\n\ ╰─╯11, 2 ⎝ 1 1 │ ⎠\ """ ascii_str = \ """\ __ 1, 10 /1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 | \\\n\ /__ | | z|\n\ \\_|11, 2 \\ 1 1 | /\ """ expr = meijerg([1]*10, [1], [1], [1], z) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = meijerg([1, 2, ], [4, 3], [3], [4, 5], 1/(1/(1/(1/x + 1) + 1) + 1)) ucode_str = \ """\ ⎛ │ 1 ⎞\n\ ⎜ │ ─────────────⎟\n\ ⎜ │ 1 ⎟\n\ ╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟\n\ │╶┐ ⎜ │ 1 ⎟\n\ ╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟\n\ ⎜ │ 1⎟\n\ ⎜ │ 1 + ─⎟\n\ ⎝ │ x⎠\ """ ascii_str = \ """\ / | 1 \\\n\ | | -------------|\n\ | | 1 |\n\ __1, 2 |1, 2 4, 3 | 1 + ---------|\n\ /__ | | 1 |\n\ \\_|4, 3 | 3 4, 5 | 1 + -----|\n\ | | 1|\n\ | | 1 + -|\n\ \\ | x/\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(expr, x) ucode_str = \ """\ ⌠ \n\ ⎮ ⎛ │ 1 ⎞ \n\ ⎮ ⎜ │ ─────────────⎟ \n\ ⎮ ⎜ │ 1 ⎟ \n\ ⎮ ╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟ \n\ ⎮ │╶┐ ⎜ │ 1 ⎟ dx\n\ ⎮ ╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟ \n\ ⎮ ⎜ │ 1⎟ \n\ ⎮ ⎜ │ 1 + ─⎟ \n\ ⎮ ⎝ │ x⎠ \n\ ⌡ \ """ ascii_str = \ """\ / \n\ | \n\ | / | 1 \\ \n\ | | | -------------| \n\ | | | 1 | \n\ | __1, 2 |1, 2 4, 3 | 1 + ---------| \n\ | /__ | | 1 | dx\n\ | \\_|4, 3 | 3 4, 5 | 1 + -----| \n\ | | | 1| \n\ | | | 1 + -| \n\ | \\ | x/ \n\ | \n\ / \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_noncommutative(): A, B, C = symbols('A,B,C', commutative=False) expr = A*B*C**-1 ascii_str = \ """\ -1\n\ A*B*C \ """ ucode_str = \ """\ -1\n\ A⋅B⋅C \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = C**-1*A*B ascii_str = \ """\ -1 \n\ C *A*B\ """ ucode_str = \ """\ -1 \n\ C ⋅A⋅B\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A*C**-1*B ascii_str = \ """\ -1 \n\ A*C *B\ """ ucode_str = \ """\ -1 \n\ A⋅C ⋅B\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A*C**-1*B/x ascii_str = \ """\ -1 \n\ A*C *B\n\ -------\n\ x \ """ ucode_str = \ """\ -1 \n\ A⋅C ⋅B\n\ ───────\n\ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_special_functions(): x, y = symbols("x y") # atan2 expr = atan2(y/sqrt(200), sqrt(x)) ascii_str = \ """\ / ___ \\\n\ |\\/ 2 *y ___|\n\ atan2|-------, \\/ x |\n\ \\ 20 /\ """ ucode_str = \ """\ ⎛√2⋅y ⎞\n\ atan2⎜────, √x⎟\n\ ⎝ 20 ⎠\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_geometry(): e = Segment((0, 1), (0, 2)) assert pretty(e) == 'Segment2D(Point2D(0, 1), Point2D(0, 2))' e = Ray((1, 1), angle=4.02*pi) assert pretty(e) == 'Ray2D(Point2D(1, 1), Point2D(2, tan(pi/50) + 1))' def test_expint(): expr = Ei(x) string = 'Ei(x)' assert pretty(expr) == string assert upretty(expr) == string expr = expint(1, z) ucode_str = "E₁(z)" ascii_str = "expint(1, z)" assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str assert pretty(Shi(x)) == 'Shi(x)' assert pretty(Si(x)) == 'Si(x)' assert pretty(Ci(x)) == 'Ci(x)' assert pretty(Chi(x)) == 'Chi(x)' assert upretty(Shi(x)) == 'Shi(x)' assert upretty(Si(x)) == 'Si(x)' assert upretty(Ci(x)) == 'Ci(x)' assert upretty(Chi(x)) == 'Chi(x)' def test_elliptic_functions(): ascii_str = \ """\ / 1 \\\n\ K|-----|\n\ \\z + 1/\ """ ucode_str = \ """\ ⎛ 1 ⎞\n\ K⎜─────⎟\n\ ⎝z + 1⎠\ """ expr = elliptic_k(1/(z + 1)) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / | 1 \\\n\ F|1|-----|\n\ \\ |z + 1/\ """ ucode_str = \ """\ ⎛ │ 1 ⎞\n\ F⎜1│─────⎟\n\ ⎝ │z + 1⎠\ """ expr = elliptic_f(1, 1/(1 + z)) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / 1 \\\n\ E|-----|\n\ \\z + 1/\ """ ucode_str = \ """\ ⎛ 1 ⎞\n\ E⎜─────⎟\n\ ⎝z + 1⎠\ """ expr = elliptic_e(1/(z + 1)) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / | 1 \\\n\ E|1|-----|\n\ \\ |z + 1/\ """ ucode_str = \ """\ ⎛ │ 1 ⎞\n\ E⎜1│─────⎟\n\ ⎝ │z + 1⎠\ """ expr = elliptic_e(1, 1/(1 + z)) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / |4\\\n\ Pi|3|-|\n\ \\ |x/\ """ ucode_str = \ """\ ⎛ │4⎞\n\ Π⎜3│─⎟\n\ ⎝ │x⎠\ """ expr = elliptic_pi(3, 4/x) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / 4| \\\n\ Pi|3; -|6|\n\ \\ x| /\ """ ucode_str = \ """\ ⎛ 4│ ⎞\n\ Π⎜3; ─│6⎟\n\ ⎝ x│ ⎠\ """ expr = elliptic_pi(3, 4/x, 6) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_RandomDomain(): from sympy.stats import Normal, Die, Exponential, pspace, where X = Normal('x1', 0, 1) assert upretty(where(X > 0)) == "Domain: 0 < x₁ ∧ x₁ < ∞" D = Die('d1', 6) assert upretty(where(D > 4)) == 'Domain: d₁ = 5 ∨ d₁ = 6' A = Exponential('a', 1) B = Exponential('b', 1) assert upretty(pspace(Tuple(A, B)).domain) == \ 'Domain: 0 ≤ a ∧ 0 ≤ b ∧ a < ∞ ∧ b < ∞' def test_PrettyPoly(): F = QQ.frac_field(x, y) R = QQ.poly_ring(x, y) expr = F.convert(x/(x + y)) assert pretty(expr) == "x/(x + y)" assert upretty(expr) == "x/(x + y)" expr = R.convert(x + y) assert pretty(expr) == "x + y" assert upretty(expr) == "x + y" def test_issue_6285(): assert pretty(Pow(2, -5, evaluate=False)) == '1 \n--\n 5\n2 ' assert pretty(Pow(x, (1/pi))) == \ ' 1 \n'\ ' --\n'\ ' pi\n'\ 'x ' def test_issue_6359(): assert pretty(Integral(x**2, x)**2) == \ """\ 2 / / \\ \n\ | | | \n\ | | 2 | \n\ | | x dx| \n\ | | | \n\ \\/ / \ """ assert upretty(Integral(x**2, x)**2) == \ """\ 2 ⎛⌠ ⎞ \n\ ⎜⎮ 2 ⎟ \n\ ⎜⎮ x dx⎟ \n\ ⎝⌡ ⎠ \ """ assert pretty(Sum(x**2, (x, 0, 1))**2) == \ """\ 2 / 1 \\ \n\ | ___ | \n\ | \\ ` | \n\ | \\ 2| \n\ | / x | \n\ | /__, | \n\ \\x = 0 / \ """ assert upretty(Sum(x**2, (x, 0, 1))**2) == \ """\ 2 ⎛ 1 ⎞ \n\ ⎜ ___ ⎟ \n\ ⎜ ╲ ⎟ \n\ ⎜ ╲ 2⎟ \n\ ⎜ ╱ x ⎟ \n\ ⎜ ╱ ⎟ \n\ ⎜ ‾‾‾ ⎟ \n\ ⎝x = 0 ⎠ \ """ assert pretty(Product(x**2, (x, 1, 2))**2) == \ """\ 2 / 2 \\ \n\ |______ | \n\ | | | 2| \n\ | | | x | \n\ | | | | \n\ \\x = 1 / \ """ assert upretty(Product(x**2, (x, 1, 2))**2) == \ """\ 2 ⎛ 2 ⎞ \n\ ⎜─┬──┬─ ⎟ \n\ ⎜ │ │ 2⎟ \n\ ⎜ │ │ x ⎟ \n\ ⎜ │ │ ⎟ \n\ ⎝x = 1 ⎠ \ """ f = Function('f') assert pretty(Derivative(f(x), x)**2) == \ """\ 2 /d \\ \n\ |--(f(x))| \n\ \\dx / \ """ assert upretty(Derivative(f(x), x)**2) == \ """\ 2 ⎛d ⎞ \n\ ⎜──(f(x))⎟ \n\ ⎝dx ⎠ \ """ def test_issue_6739(): ascii_str = \ """\ 1 \n\ -----\n\ ___\n\ \\/ x \ """ ucode_str = \ """\ 1 \n\ ──\n\ √x\ """ assert pretty(1/sqrt(x)) == ascii_str assert upretty(1/sqrt(x)) == ucode_str def test_complicated_symbol_unchanged(): for symb_name in ["dexpr2_d1tau", "dexpr2^d1tau"]: assert pretty(Symbol(symb_name)) == symb_name def test_categories(): from sympy.categories import (Object, IdentityMorphism, NamedMorphism, Category, Diagram, DiagramGrid) A1 = Object("A1") A2 = Object("A2") A3 = Object("A3") f1 = NamedMorphism(A1, A2, "f1") f2 = NamedMorphism(A2, A3, "f2") id_A1 = IdentityMorphism(A1) K1 = Category("K1") assert pretty(A1) == "A1" assert upretty(A1) == "A₁" assert pretty(f1) == "f1:A1-->A2" assert upretty(f1) == "f₁:A₁——▶A₂" assert pretty(id_A1) == "id:A1-->A1" assert upretty(id_A1) == "id:A₁——▶A₁" assert pretty(f2*f1) == "f2*f1:A1-->A3" assert upretty(f2*f1) == "f₂∘f₁:A₁——▶A₃" assert pretty(K1) == "K1" assert upretty(K1) == "K₁" # Test how diagrams are printed. d = Diagram() assert pretty(d) == "EmptySet" assert upretty(d) == "∅" d = Diagram({f1: "unique", f2: S.EmptySet}) assert pretty(d) == "{f2*f1:A1-->A3: EmptySet, id:A1-->A1: " \ "EmptySet, id:A2-->A2: EmptySet, id:A3-->A3: " \ "EmptySet, f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet}" assert upretty(d) == "{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, " \ "id:A₂——▶A₂: ∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}" d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"}) assert pretty(d) == "{f2*f1:A1-->A3: EmptySet, id:A1-->A1: " \ "EmptySet, id:A2-->A2: EmptySet, id:A3-->A3: " \ "EmptySet, f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet}" \ " ==> {f2*f1:A1-->A3: {unique}}" assert upretty(d) == "{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, id:A₂——▶A₂: " \ "∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}" \ " ══▶ {f₂∘f₁:A₁——▶A₃: {unique}}" grid = DiagramGrid(d) assert pretty(grid) == "A1 A2\n \nA3 " assert upretty(grid) == "A₁ A₂\n \nA₃ " def test_PrettyModules(): R = QQ.old_poly_ring(x, y) F = R.free_module(2) M = F.submodule([x, y], [1, x**2]) ucode_str = \ """\ 2\n\ ℚ[x, y] \ """ ascii_str = \ """\ 2\n\ QQ[x, y] \ """ assert upretty(F) == ucode_str assert pretty(F) == ascii_str ucode_str = \ """\ ╱ ⎡ 2⎤╲\n\ ╲[x, y], ⎣1, x ⎦╱\ """ ascii_str = \ """\ 2 \n\ <[x, y], [1, x ]>\ """ assert upretty(M) == ucode_str assert pretty(M) == ascii_str I = R.ideal(x**2, y) ucode_str = \ """\ ╱ 2 ╲\n\ ╲x , y╱\ """ ascii_str = \ """\ 2 \n\ \ """ assert upretty(I) == ucode_str assert pretty(I) == ascii_str Q = F / M ucode_str = \ """\ 2 \n\ ℚ[x, y] \n\ ─────────────────\n\ ╱ ⎡ 2⎤╲\n\ ╲[x, y], ⎣1, x ⎦╱\ """ ascii_str = \ """\ 2 \n\ QQ[x, y] \n\ -----------------\n\ 2 \n\ <[x, y], [1, x ]>\ """ assert upretty(Q) == ucode_str assert pretty(Q) == ascii_str ucode_str = \ """\ ╱⎡ 3⎤ ╲\n\ │⎢ x ⎥ ╱ ⎡ 2⎤╲ ╱ ⎡ 2⎤╲│\n\ │⎢1, ──⎥ + ╲[x, y], ⎣1, x ⎦╱, [2, y] + ╲[x, y], ⎣1, x ⎦╱│\n\ ╲⎣ 2 ⎦ ╱\ """ ascii_str = \ """\ 3 \n\ x 2 2 \n\ <[1, --] + <[x, y], [1, x ]>, [2, y] + <[x, y], [1, x ]>>\n\ 2 \ """ def test_QuotientRing(): R = QQ.old_poly_ring(x)/[x**2 + 1] ucode_str = \ """\ ℚ[x] \n\ ────────\n\ ╱ 2 ╲\n\ ╲x + 1╱\ """ ascii_str = \ """\ QQ[x] \n\ --------\n\ 2 \n\ \ """ assert upretty(R) == ucode_str assert pretty(R) == ascii_str ucode_str = \ """\ ╱ 2 ╲\n\ 1 + ╲x + 1╱\ """ ascii_str = \ """\ 2 \n\ 1 + \ """ assert upretty(R.one) == ucode_str assert pretty(R.one) == ascii_str def test_Homomorphism(): from sympy.polys.agca import homomorphism R = QQ.old_poly_ring(x) expr = homomorphism(R.free_module(1), R.free_module(1), [0]) ucode_str = \ """\ 1 1\n\ [0] : ℚ[x] ──> ℚ[x] \ """ ascii_str = \ """\ 1 1\n\ [0] : QQ[x] --> QQ[x] \ """ assert upretty(expr) == ucode_str assert pretty(expr) == ascii_str expr = homomorphism(R.free_module(2), R.free_module(2), [0, 0]) ucode_str = \ """\ ⎡0 0⎤ 2 2\n\ ⎢ ⎥ : ℚ[x] ──> ℚ[x] \n\ ⎣0 0⎦ \ """ ascii_str = \ """\ [0 0] 2 2\n\ [ ] : QQ[x] --> QQ[x] \n\ [0 0] \ """ assert upretty(expr) == ucode_str assert pretty(expr) == ascii_str expr = homomorphism(R.free_module(1), R.free_module(1) / [[x]], [0]) ucode_str = \ """\ 1\n\ 1 ℚ[x] \n\ [0] : ℚ[x] ──> ─────\n\ <[x]>\ """ ascii_str = \ """\ 1\n\ 1 QQ[x] \n\ [0] : QQ[x] --> ------\n\ <[x]> \ """ assert upretty(expr) == ucode_str assert pretty(expr) == ascii_str def test_Tr(): A, B = symbols('A B', commutative=False) t = Tr(A*B) assert pretty(t) == r'Tr(A*B)' assert upretty(t) == 'Tr(A⋅B)' def test_pretty_Add(): eq = Mul(-2, x - 2, evaluate=False) + 5 assert pretty(eq) == '5 - 2*(x - 2)' def test_issue_7179(): assert upretty(Not(Equivalent(x, y))) == 'x ⇎ y' assert upretty(Not(Implies(x, y))) == 'x ↛ y' def test_issue_7180(): assert upretty(Equivalent(x, y)) == 'x ⇔ y' def test_pretty_Complement(): assert pretty(S.Reals - S.Naturals) == '(-oo, oo) \\ Naturals' assert upretty(S.Reals - S.Naturals) == 'ℝ \\ ℕ' assert pretty(S.Reals - S.Naturals0) == '(-oo, oo) \\ Naturals0' assert upretty(S.Reals - S.Naturals0) == 'ℝ \\ ℕ₀' def test_pretty_SymmetricDifference(): from sympy.sets.sets import SymmetricDifference assert upretty(SymmetricDifference(Interval(2,3), Interval(3,5), \ evaluate = False)) == '[2, 3] ∆ [3, 5]' with raises(NotImplementedError): pretty(SymmetricDifference(Interval(2,3), Interval(3,5), evaluate = False)) def test_pretty_Contains(): assert pretty(Contains(x, S.Integers)) == 'Contains(x, Integers)' assert upretty(Contains(x, S.Integers)) == 'x ∈ ℤ' def test_issue_8292(): from sympy.core import sympify e = sympify('((x+x**4)/(x-1))-(2*(x-1)**4/(x-1)**4)', evaluate=False) ucode_str = \ """\ 4 4 \n\ 2⋅(x - 1) x + x\n\ - ────────── + ──────\n\ 4 x - 1 \n\ (x - 1) \ """ ascii_str = \ """\ 4 4 \n\ 2*(x - 1) x + x\n\ - ---------- + ------\n\ 4 x - 1 \n\ (x - 1) \ """ assert pretty(e) == ascii_str assert upretty(e) == ucode_str def test_issue_4335(): y = Function('y') expr = -y(x).diff(x) ucode_str = \ """\ d \n\ -──(y(x))\n\ dx \ """ ascii_str = \ """\ d \n\ - --(y(x))\n\ dx \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_issue_8344(): from sympy.core import sympify e = sympify('2*x*y**2/1**2 + 1', evaluate=False) ucode_str = \ """\ 2 \n\ 2⋅x⋅y \n\ ────── + 1\n\ 2 \n\ 1 \ """ assert upretty(e) == ucode_str def test_issue_6324(): x = Pow(2, 3, evaluate=False) y = Pow(10, -2, evaluate=False) e = Mul(x, y, evaluate=False) ucode_str = \ """\ 3\n\ 2 \n\ ───\n\ 2\n\ 10 \ """ assert upretty(e) == ucode_str def test_issue_7927(): e = sin(x/2)**cos(x/2) ucode_str = \ """\ ⎛x⎞\n\ cos⎜─⎟\n\ ⎝2⎠\n\ ⎛ ⎛x⎞⎞ \n\ ⎜sin⎜─⎟⎟ \n\ ⎝ ⎝2⎠⎠ \ """ assert upretty(e) == ucode_str e = sin(x)**(S(11)/13) ucode_str = \ """\ 11\n\ ──\n\ 13\n\ (sin(x)) \ """ assert upretty(e) == ucode_str def test_issue_6134(): from sympy.abc import lamda, t phi = Function('phi') e = lamda*x*Integral(phi(t)*pi*sin(pi*t), (t, 0, 1)) + lamda*x**2*Integral(phi(t)*2*pi*sin(2*pi*t), (t, 0, 1)) ucode_str = \ """\ 1 1 \n\ 2 ⌠ ⌠ \n\ λ⋅x ⋅⎮ 2⋅π⋅φ(t)⋅sin(2⋅π⋅t) dt + λ⋅x⋅⎮ π⋅φ(t)⋅sin(π⋅t) dt\n\ ⌡ ⌡ \n\ 0 0 \ """ assert upretty(e) == ucode_str def test_issue_9877(): ucode_str1 = '(2, 3) ∪ ([1, 2] \\ {x})' a, b, c = Interval(2, 3, True, True), Interval(1, 2), FiniteSet(x) assert upretty(Union(a, Complement(b, c))) == ucode_str1 ucode_str2 = '{x} ∩ {y} ∩ ({z} \\ [1, 2])' d, e, f, g = FiniteSet(x), FiniteSet(y), FiniteSet(z), Interval(1, 2) assert upretty(Intersection(d, e, Complement(f, g))) == ucode_str2 def test_issue_13651(): expr1 = c + Mul(-1, a + b, evaluate=False) assert pretty(expr1) == 'c - (a + b)' expr2 = c + Mul(-1, a - b + d, evaluate=False) assert pretty(expr2) == 'c - (a - b + d)' def test_pretty_primenu(): from sympy.ntheory.factor_ import primenu ascii_str1 = "nu(n)" ucode_str1 = "ν(n)" n = symbols('n', integer=True) assert pretty(primenu(n)) == ascii_str1 assert upretty(primenu(n)) == ucode_str1 def test_pretty_primeomega(): from sympy.ntheory.factor_ import primeomega ascii_str1 = "Omega(n)" ucode_str1 = "Ω(n)" n = symbols('n', integer=True) assert pretty(primeomega(n)) == ascii_str1 assert upretty(primeomega(n)) == ucode_str1 def test_pretty_Mod(): from sympy.core import Mod ascii_str1 = "x mod 7" ucode_str1 = "x mod 7" ascii_str2 = "(x + 1) mod 7" ucode_str2 = "(x + 1) mod 7" ascii_str3 = "2*x mod 7" ucode_str3 = "2⋅x mod 7" ascii_str4 = "(x mod 7) + 1" ucode_str4 = "(x mod 7) + 1" ascii_str5 = "2*(x mod 7)" ucode_str5 = "2⋅(x mod 7)" x = symbols('x', integer=True) assert pretty(Mod(x, 7)) == ascii_str1 assert upretty(Mod(x, 7)) == ucode_str1 assert pretty(Mod(x + 1, 7)) == ascii_str2 assert upretty(Mod(x + 1, 7)) == ucode_str2 assert pretty(Mod(2 * x, 7)) == ascii_str3 assert upretty(Mod(2 * x, 7)) == ucode_str3 assert pretty(Mod(x, 7) + 1) == ascii_str4 assert upretty(Mod(x, 7) + 1) == ucode_str4 assert pretty(2 * Mod(x, 7)) == ascii_str5 assert upretty(2 * Mod(x, 7)) == ucode_str5 def test_issue_11801(): assert pretty(Symbol("")) == "" assert upretty(Symbol("")) == "" def test_pretty_UnevaluatedExpr(): x = symbols('x') he = UnevaluatedExpr(1/x) ucode_str = \ """\ 1\n\ ─\n\ x\ """ assert upretty(he) == ucode_str ucode_str = \ """\ 2\n\ ⎛1⎞ \n\ ⎜─⎟ \n\ ⎝x⎠ \ """ assert upretty(he**2) == ucode_str ucode_str = \ """\ 1\n\ 1 + ─\n\ x\ """ assert upretty(he + 1) == ucode_str ucode_str = \ ('''\ 1\n\ x⋅─\n\ x\ ''') assert upretty(x*he) == ucode_str def test_issue_10472(): M = (Matrix([[0, 0], [0, 0]]), Matrix([0, 0])) ucode_str = \ """\ ⎛⎡0 0⎤ ⎡0⎤⎞ ⎜⎢ ⎥, ⎢ ⎥⎟ ⎝⎣0 0⎦ ⎣0⎦⎠\ """ assert upretty(M) == ucode_str def test_MatrixElement_printing(): # test cases for issue #11821 A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) ascii_str1 = "A_00" ucode_str1 = "A₀₀" assert pretty(A[0, 0]) == ascii_str1 assert upretty(A[0, 0]) == ucode_str1 ascii_str1 = "3*A_00" ucode_str1 = "3⋅A₀₀" assert pretty(3*A[0, 0]) == ascii_str1 assert upretty(3*A[0, 0]) == ucode_str1 ascii_str1 = "(-B + A)[0, 0]" ucode_str1 = "(-B + A)[0, 0]" F = C[0, 0].subs(C, A - B) assert pretty(F) == ascii_str1 assert upretty(F) == ucode_str1 def test_issue_12675(): x, y, t, j = symbols('x y t j') e = CoordSys3D('e') ucode_str = \ """\ ⎛ t⎞ \n\ ⎜⎛x⎞ ⎟ j_e\n\ ⎜⎜─⎟ ⎟ \n\ ⎝⎝y⎠ ⎠ \ """ assert upretty((x/y)**t*e.j) == ucode_str ucode_str = \ """\ ⎛1⎞ \n\ ⎜─⎟ j_e\n\ ⎝y⎠ \ """ assert upretty((1/y)*e.j) == ucode_str def test_MatrixSymbol_printing(): # test cases for issue #14237 A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) C = MatrixSymbol("C", 3, 3) assert pretty(-A*B*C) == "-A*B*C" assert pretty(A - B) == "-B + A" assert pretty(A*B*C - A*B - B*C) == "-A*B -B*C + A*B*C" # issue #14814 x = MatrixSymbol('x', n, n) y = MatrixSymbol('y*', n, n) assert pretty(x + y) == "x + y*" ascii_str = \ """\ 2 \n\ -2*y* -a*x\ """ assert pretty(-a*x + -2*y*y) == ascii_str def test_degree_printing(): expr1 = 90*degree assert pretty(expr1) == '90°' expr2 = x*degree assert pretty(expr2) == 'x°' expr3 = cos(x*degree + 90*degree) assert pretty(expr3) == 'cos(x° + 90°)' def test_vector_expr_pretty_printing(): A = CoordSys3D('A') assert upretty(Cross(A.i, A.x*A.i+3*A.y*A.j)) == "(i_A)×((x_A) i_A + (3⋅y_A) j_A)" assert upretty(x*Cross(A.i, A.j)) == 'x⋅(i_A)×(j_A)' assert upretty(Curl(A.x*A.i + 3*A.y*A.j)) == "∇×((x_A) i_A + (3⋅y_A) j_A)" assert upretty(Divergence(A.x*A.i + 3*A.y*A.j)) == "∇⋅((x_A) i_A + (3⋅y_A) j_A)" assert upretty(Dot(A.i, A.x*A.i+3*A.y*A.j)) == "(i_A)⋅((x_A) i_A + (3⋅y_A) j_A)" assert upretty(Gradient(A.x+3*A.y)) == "∇(x_A + 3⋅y_A)" assert upretty(Laplacian(A.x+3*A.y)) == "∆(x_A + 3⋅y_A)" # TODO: add support for ASCII pretty. def test_pretty_print_tensor_expr(): L = TensorIndexType("L") i, j, k = tensor_indices("i j k", L) i0 = tensor_indices("i_0", L) A, B, C, D = tensor_heads("A B C D", [L]) H = TensorHead("H", [L, L]) expr = -i ascii_str = \ """\ -i\ """ ucode_str = \ """\ -i\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i) ascii_str = \ """\ i\n\ A \n\ \ """ ucode_str = \ """\ i\n\ A \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i0) ascii_str = \ """\ i_0\n\ A \n\ \ """ ucode_str = \ """\ i₀\n\ A \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(-i) ascii_str = \ """\ \n\ A \n\ i\ """ ucode_str = \ """\ \n\ A \n\ i\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -3*A(-i) ascii_str = \ """\ \n\ -3*A \n\ i\ """ ucode_str = \ """\ \n\ -3⋅A \n\ i\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = H(i, -j) ascii_str = \ """\ i \n\ H \n\ j\ """ ucode_str = \ """\ i \n\ H \n\ j\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = H(i, -i) ascii_str = \ """\ L_0 \n\ H \n\ L_0\ """ ucode_str = \ """\ L₀ \n\ H \n\ L₀\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = H(i, -j)*A(j)*B(k) ascii_str = \ """\ i L_0 k\n\ H *A *B \n\ L_0 \ """ ucode_str = \ """\ i L₀ k\n\ H ⋅A ⋅B \n\ L₀ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (1+x)*A(i) ascii_str = \ """\ i\n\ (x + 1)*A \n\ \ """ ucode_str = \ """\ i\n\ (x + 1)⋅A \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i) + 3*B(i) ascii_str = \ """\ i i\n\ 3*B + A \n\ \ """ ucode_str = \ """\ i i\n\ 3⋅B + A \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_print_tensor_partial_deriv(): from sympy.tensor.toperators import PartialDerivative L = TensorIndexType("L") i, j, k = tensor_indices("i j k", L) A, B, C, D = tensor_heads("A B C D", [L]) H = TensorHead("H", [L, L]) expr = PartialDerivative(A(i), A(j)) ascii_str = \ """\ d / i\\\n\ ---|A |\n\ j\\ /\n\ dA \n\ \ """ ucode_str = \ """\ ∂ ⎛ i⎞\n\ ───⎜A ⎟\n\ j⎝ ⎠\n\ ∂A \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i)*PartialDerivative(H(k, -i), A(j)) ascii_str = \ """\ L_0 d / k \\\n\ A *---|H |\n\ j\\ L_0/\n\ dA \n\ \ """ ucode_str = \ """\ L₀ ∂ ⎛ k ⎞\n\ A ⋅───⎜H ⎟\n\ j⎝ L₀⎠\n\ ∂A \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i)*PartialDerivative(B(k)*C(-i) + 3*H(k, -i), A(j)) ascii_str = \ """\ L_0 d / k k \\\n\ A *---|3*H + B *C |\n\ j\\ L_0 L_0/\n\ dA \n\ \ """ ucode_str = \ """\ L₀ ∂ ⎛ k k ⎞\n\ A ⋅───⎜3⋅H + B ⋅C ⎟\n\ j⎝ L₀ L₀⎠\n\ ∂A \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (A(i) + B(i))*PartialDerivative(C(j), D(j)) ascii_str = \ """\ / i i\\ d / L_0\\\n\ |A + B |*-----|C |\n\ \\ / L_0\\ /\n\ dD \n\ \ """ ucode_str = \ """\ ⎛ i i⎞ ∂ ⎛ L₀⎞\n\ ⎜A + B ⎟⋅────⎜C ⎟\n\ ⎝ ⎠ L₀⎝ ⎠\n\ ∂D \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (A(i) + B(i))*PartialDerivative(C(-i), D(j)) ascii_str = \ """\ / L_0 L_0\\ d / \\\n\ |A + B |*---|C |\n\ \\ / j\\ L_0/\n\ dD \n\ \ """ ucode_str = \ """\ ⎛ L₀ L₀⎞ ∂ ⎛ ⎞\n\ ⎜A + B ⎟⋅───⎜C ⎟\n\ ⎝ ⎠ j⎝ L₀⎠\n\ ∂D \n\ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = PartialDerivative(B(-i) + A(-i), A(-j), A(-n)) ucode_str = """\ 2 \n\ ∂ ⎛ ⎞\n\ ───────⎜A + B ⎟\n\ ⎝ i i⎠\n\ ∂A ∂A \n\ n j \ """ assert upretty(expr) == ucode_str expr = PartialDerivative(3*A(-i), A(-j), A(-n)) ucode_str = """\ 2 \n\ ∂ ⎛ ⎞\n\ ───────⎜3⋅A ⎟\n\ ⎝ i⎠\n\ ∂A ∂A \n\ n j \ """ assert upretty(expr) == ucode_str expr = TensorElement(H(i, j), {i:1}) ascii_str = \ """\ i=1,j\n\ H \n\ \ """ ucode_str = ascii_str assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = TensorElement(H(i, j), {i: 1, j: 1}) ascii_str = \ """\ i=1,j=1\n\ H \n\ \ """ ucode_str = ascii_str assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = TensorElement(H(i, j), {j: 1}) ascii_str = \ """\ i,j=1\n\ H \n\ \ """ ucode_str = ascii_str expr = TensorElement(H(-i, j), {-i: 1}) ascii_str = \ """\ j\n\ H \n\ i=1 \ """ ucode_str = ascii_str assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_issue_15560(): a = MatrixSymbol('a', 1, 1) e = pretty(a*(KroneckerProduct(a, a))) result = 'a*(a x a)' assert e == result def test_print_lerchphi(): # Part of issue 6013 a = Symbol('a') pretty(lerchphi(a, 1, 2)) uresult = 'Φ(a, 1, 2)' aresult = 'lerchphi(a, 1, 2)' assert pretty(lerchphi(a, 1, 2)) == aresult assert upretty(lerchphi(a, 1, 2)) == uresult def test_issue_15583(): N = mechanics.ReferenceFrame('N') result = '(n_x, n_y, n_z)' e = pretty((N.x, N.y, N.z)) assert e == result def test_matrixSymbolBold(): # Issue 15871 def boldpretty(expr): return xpretty(expr, use_unicode=True, wrap_line=False, mat_symbol_style="bold") from sympy.matrices.expressions.trace import trace A = MatrixSymbol("A", 2, 2) assert boldpretty(trace(A)) == 'tr(𝐀)' A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) C = MatrixSymbol("C", 3, 3) assert boldpretty(-A) == '-𝐀' assert boldpretty(A - A*B - B) == '-𝐁 -𝐀⋅𝐁 + 𝐀' assert boldpretty(-A*B - A*B*C - B) == '-𝐁 -𝐀⋅𝐁 -𝐀⋅𝐁⋅𝐂' A = MatrixSymbol("Addot", 3, 3) assert boldpretty(A) == '𝐀̈' omega = MatrixSymbol("omega", 3, 3) assert boldpretty(omega) == 'ω' omega = MatrixSymbol("omeganorm", 3, 3) assert boldpretty(omega) == '‖ω‖' a = Symbol('alpha') b = Symbol('b') c = MatrixSymbol("c", 3, 1) d = MatrixSymbol("d", 3, 1) assert boldpretty(a*B*c+b*d) == 'b⋅𝐝 + α⋅𝐁⋅𝐜' d = MatrixSymbol("delta", 3, 1) B = MatrixSymbol("Beta", 3, 3) assert boldpretty(a*B*c+b*d) == 'b⋅δ + α⋅Β⋅𝐜' A = MatrixSymbol("A_2", 3, 3) assert boldpretty(A) == '𝐀₂' def test_center_accent(): assert center_accent('a', '\N{COMBINING TILDE}') == 'ã' assert center_accent('aa', '\N{COMBINING TILDE}') == 'aã' assert center_accent('aaa', '\N{COMBINING TILDE}') == 'aãa' assert center_accent('aaaa', '\N{COMBINING TILDE}') == 'aaãa' assert center_accent('aaaaa', '\N{COMBINING TILDE}') == 'aaãaa' assert center_accent('abcdefg', '\N{COMBINING FOUR DOTS ABOVE}') == 'abcd⃜efg' def test_imaginary_unit(): from sympy.printing.pretty import pretty # b/c it was redefined above assert pretty(1 + I, use_unicode=False) == '1 + I' assert pretty(1 + I, use_unicode=True) == '1 + ⅈ' assert pretty(1 + I, use_unicode=False, imaginary_unit='j') == '1 + I' assert pretty(1 + I, use_unicode=True, imaginary_unit='j') == '1 + ⅉ' raises(TypeError, lambda: pretty(I, imaginary_unit=I)) raises(ValueError, lambda: pretty(I, imaginary_unit="kkk")) def test_str_special_matrices(): from sympy.matrices import Identity, ZeroMatrix, OneMatrix assert pretty(Identity(4)) == 'I' assert upretty(Identity(4)) == '𝕀' assert pretty(ZeroMatrix(2, 2)) == '0' assert upretty(ZeroMatrix(2, 2)) == '𝟘' assert pretty(OneMatrix(2, 2)) == '1' assert upretty(OneMatrix(2, 2)) == '𝟙' def test_pretty_misc_functions(): assert pretty(LambertW(x)) == 'W(x)' assert upretty(LambertW(x)) == 'W(x)' assert pretty(LambertW(x, y)) == 'W(x, y)' assert upretty(LambertW(x, y)) == 'W(x, y)' assert pretty(airyai(x)) == 'Ai(x)' assert upretty(airyai(x)) == 'Ai(x)' assert pretty(airybi(x)) == 'Bi(x)' assert upretty(airybi(x)) == 'Bi(x)' assert pretty(airyaiprime(x)) == "Ai'(x)" assert upretty(airyaiprime(x)) == "Ai'(x)" assert pretty(airybiprime(x)) == "Bi'(x)" assert upretty(airybiprime(x)) == "Bi'(x)" assert pretty(fresnelc(x)) == 'C(x)' assert upretty(fresnelc(x)) == 'C(x)' assert pretty(fresnels(x)) == 'S(x)' assert upretty(fresnels(x)) == 'S(x)' assert pretty(Heaviside(x)) == 'Heaviside(x)' assert upretty(Heaviside(x)) == 'θ(x)' assert pretty(Heaviside(x, y)) == 'Heaviside(x, y)' assert upretty(Heaviside(x, y)) == 'θ(x, y)' assert pretty(dirichlet_eta(x)) == 'dirichlet_eta(x)' assert upretty(dirichlet_eta(x)) == 'η(x)' def test_hadamard_power(): m, n, p = symbols('m, n, p', integer=True) A = MatrixSymbol('A', m, n) B = MatrixSymbol('B', m, n) # Testing printer: expr = hadamard_power(A, n) ascii_str = \ """\ .n\n\ A \ """ ucode_str = \ """\ ∘n\n\ A \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hadamard_power(A, 1+n) ascii_str = \ """\ .(n + 1)\n\ A \ """ ucode_str = \ """\ ∘(n + 1)\n\ A \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hadamard_power(A*B.T, 1+n) ascii_str = \ """\ .(n + 1)\n\ / T\\ \n\ \\A*B / \ """ ucode_str = \ """\ ∘(n + 1)\n\ ⎛ T⎞ \n\ ⎝A⋅B ⎠ \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_issue_17258(): n = Symbol('n', integer=True) assert pretty(Sum(n, (n, -oo, 1))) == \ ' 1 \n'\ ' __ \n'\ ' \\ ` \n'\ ' ) n\n'\ ' /_, \n'\ 'n = -oo ' assert upretty(Sum(n, (n, -oo, 1))) == \ """\ 1 \n\ ___ \n\ ╲ \n\ ╲ \n\ ╱ n\n\ ╱ \n\ ‾‾‾ \n\ n = -∞ \ """ def test_is_combining(): line = "v̇_m" assert [is_combining(sym) for sym in line] == \ [False, True, False, False] def test_issue_17616(): assert pretty(pi**(1/exp(1))) == \ ' / -1\\\n'\ ' \\e /\n'\ 'pi ' assert upretty(pi**(1/exp(1))) == \ ' ⎛ -1⎞\n'\ ' ⎝ℯ ⎠\n'\ 'π ' assert pretty(pi**(1/pi)) == \ ' 1 \n'\ ' --\n'\ ' pi\n'\ 'pi ' assert upretty(pi**(1/pi)) == \ ' 1\n'\ ' ─\n'\ ' π\n'\ 'π ' assert pretty(pi**(1/EulerGamma)) == \ ' 1 \n'\ ' ----------\n'\ ' EulerGamma\n'\ 'pi ' assert upretty(pi**(1/EulerGamma)) == \ ' 1\n'\ ' ─\n'\ ' γ\n'\ 'π ' z = Symbol("x_17") assert upretty(7**(1/z)) == \ 'x₁₇___\n'\ ' ╲╱ 7 ' assert pretty(7**(1/z)) == \ 'x_17___\n'\ ' \\/ 7 ' def test_issue_17857(): assert pretty(Range(-oo, oo)) == '{..., -1, 0, 1, ...}' assert pretty(Range(oo, -oo, -1)) == '{..., 1, 0, -1, ...}' def test_issue_18272(): x = Symbol('x') n = Symbol('n') assert upretty(ConditionSet(x, Eq(-x + exp(x), 0), S.Complexes)) == \ '⎧ │ ⎛ x ⎞⎫\n'\ '⎨x │ x ∊ ℂ ∧ ⎝-x + ℯ = 0⎠⎬\n'\ '⎩ │ ⎭' assert upretty(ConditionSet(x, Contains(n/2, Interval(0, oo)), FiniteSet(-n/2, n/2))) == \ '⎧ │ ⎧-n n⎫ ⎛n ⎞⎫\n'\ '⎨x │ x ∊ ⎨───, ─⎬ ∧ ⎜─ ∈ [0, ∞)⎟⎬\n'\ '⎩ │ ⎩ 2 2⎭ ⎝2 ⎠⎭' assert upretty(ConditionSet(x, Eq(Piecewise((1, x >= 3), (x/2 - 1/2, x >= 2), (1/2, x >= 1), (x/2, True)) - 1/2, 0), Interval(0, 3))) == \ '⎧ │ ⎛⎛⎧ 1 for x ≥ 3⎞ ⎞⎫\n'\ '⎪ │ ⎜⎜⎪ ⎟ ⎟⎪\n'\ '⎪ │ ⎜⎜⎪x ⎟ ⎟⎪\n'\ '⎪ │ ⎜⎜⎪─ - 0.5 for x ≥ 2⎟ ⎟⎪\n'\ '⎪ │ ⎜⎜⎪2 ⎟ ⎟⎪\n'\ '⎨x │ x ∊ [0, 3] ∧ ⎜⎜⎨ ⎟ - 0.5 = 0⎟⎬\n'\ '⎪ │ ⎜⎜⎪ 0.5 for x ≥ 1⎟ ⎟⎪\n'\ '⎪ │ ⎜⎜⎪ ⎟ ⎟⎪\n'\ '⎪ │ ⎜⎜⎪ x ⎟ ⎟⎪\n'\ '⎪ │ ⎜⎜⎪ ─ otherwise⎟ ⎟⎪\n'\ '⎩ │ ⎝⎝⎩ 2 ⎠ ⎠⎭' def test_Str(): from sympy.core.symbol import Str assert pretty(Str('x')) == 'x' def test_symbolic_probability(): mu = symbols("mu") sigma = symbols("sigma", positive=True) X = Normal("X", mu, sigma) assert pretty(Expectation(X)) == r'E[X]' assert pretty(Variance(X)) == r'Var(X)' assert pretty(Probability(X > 0)) == r'P(X > 0)' Y = Normal("Y", mu, sigma) assert pretty(Covariance(X, Y)) == 'Cov(X, Y)' def test_issue_21758(): from sympy.functions.elementary.piecewise import piecewise_fold from sympy.series.fourier import FourierSeries x = Symbol('x') k, n = symbols('k n') fo = FourierSeries(x, (x, -pi, pi), (0, SeqFormula(0, (k, 1, oo)), SeqFormula( Piecewise((-2*pi*cos(n*pi)/n + 2*sin(n*pi)/n**2, (n > -oo) & (n < oo) & Ne(n, 0)), (0, True))*sin(n*x)/pi, (n, 1, oo)))) assert upretty(piecewise_fold(fo)) == \ '⎧ 2⋅sin(3⋅x) \n'\ '⎪2⋅sin(x) - sin(2⋅x) + ────────── + … for n > -∞ ∧ n < ∞ ∧ n ≠ 0\n'\ '⎨ 3 \n'\ '⎪ \n'\ '⎩ 0 otherwise ' assert pretty(FourierSeries(x, (x, -pi, pi), (0, SeqFormula(0, (k, 1, oo)), SeqFormula(0, (n, 1, oo))))) == '0' def test_diffgeom(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField x,y = symbols('x y', real=True) m = Manifold('M', 2) assert pretty(m) == 'M' p = Patch('P', m) assert pretty(p) == "P" rect = CoordSystem('rect', p, [x, y]) assert pretty(rect) == "rect" b = BaseScalarField(rect, 0) assert pretty(b) == "x" def test_deprecated_prettyForm(): with warns_deprecated_sympy(): from sympy.printing.pretty.pretty_symbology import xstr assert xstr(1) == '1' with warns_deprecated_sympy(): from sympy.printing.pretty.stringpict import prettyForm p = prettyForm('s', unicode='s') with warns_deprecated_sympy(): assert p.unicode == p.s == 's'