from sympy.concrete.summations import Sum from sympy.core.expr import Expr from sympy.core.symbol import symbols from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import sin from sympy.matrices.dense import MutableDenseMatrix as Matrix from sympy.sets.sets import Interval from sympy.utilities.lambdify import lambdify from sympy.testing.pytest import raises from sympy.printing.tensorflow import TensorflowPrinter from sympy.printing.lambdarepr import lambdarepr, LambdaPrinter, NumExprPrinter x, y, z = symbols("x,y,z") i, a, b = symbols("i,a,b") j, c, d = symbols("j,c,d") def test_basic(): assert lambdarepr(x*y) == "x*y" assert lambdarepr(x + y) in ["y + x", "x + y"] assert lambdarepr(x**y) == "x**y" def test_matrix(): # Test printing a Matrix that has an element that is printed differently # with the LambdaPrinter than with the StrPrinter. e = x % 2 assert lambdarepr(e) != str(e) assert lambdarepr(Matrix([e])) == 'ImmutableDenseMatrix([[x % 2]])' def test_piecewise(): # In each case, test eval() the lambdarepr() to make sure there are a # correct number of parentheses. It will give a SyntaxError if there aren't. h = "lambda x: " p = Piecewise((x, x < 0)) l = lambdarepr(p) eval(h + l) assert l == "((x) if (x < 0) else None)" p = Piecewise( (1, x < 1), (2, x < 2), (0, True) ) l = lambdarepr(p) eval(h + l) assert l == "((1) if (x < 1) else (2) if (x < 2) else (0))" p = Piecewise( (1, x < 1), (2, x < 2), ) l = lambdarepr(p) eval(h + l) assert l == "((1) if (x < 1) else (2) if (x < 2) else None)" p = Piecewise( (x, x < 1), (x**2, Interval(3, 4, True, False).contains(x)), (0, True), ) l = lambdarepr(p) eval(h + l) assert l == "((x) if (x < 1) else (x**2) if (((x <= 4)) and ((x > 3))) else (0))" p = Piecewise( (x**2, x < 0), (x, x < 1), (2 - x, x >= 1), (0, True), evaluate=False ) l = lambdarepr(p) eval(h + l) assert l == "((x**2) if (x < 0) else (x) if (x < 1)"\ " else (2 - x) if (x >= 1) else (0))" p = Piecewise( (x**2, x < 0), (x, x < 1), (2 - x, x >= 1), evaluate=False ) l = lambdarepr(p) eval(h + l) assert l == "((x**2) if (x < 0) else (x) if (x < 1)"\ " else (2 - x) if (x >= 1) else None)" p = Piecewise( (1, x >= 1), (2, x >= 2), (3, x >= 3), (4, x >= 4), (5, x >= 5), (6, True) ) l = lambdarepr(p) eval(h + l) assert l == "((1) if (x >= 1) else (2) if (x >= 2) else (3) if (x >= 3)"\ " else (4) if (x >= 4) else (5) if (x >= 5) else (6))" p = Piecewise( (1, x <= 1), (2, x <= 2), (3, x <= 3), (4, x <= 4), (5, x <= 5), (6, True) ) l = lambdarepr(p) eval(h + l) assert l == "((1) if (x <= 1) else (2) if (x <= 2) else (3) if (x <= 3)"\ " else (4) if (x <= 4) else (5) if (x <= 5) else (6))" p = Piecewise( (1, x > 1), (2, x > 2), (3, x > 3), (4, x > 4), (5, x > 5), (6, True) ) l = lambdarepr(p) eval(h + l) assert l =="((1) if (x > 1) else (2) if (x > 2) else (3) if (x > 3)"\ " else (4) if (x > 4) else (5) if (x > 5) else (6))" p = Piecewise( (1, x < 1), (2, x < 2), (3, x < 3), (4, x < 4), (5, x < 5), (6, True) ) l = lambdarepr(p) eval(h + l) assert l == "((1) if (x < 1) else (2) if (x < 2) else (3) if (x < 3)"\ " else (4) if (x < 4) else (5) if (x < 5) else (6))" p = Piecewise( (Piecewise( (1, x > 0), (2, True) ), y > 0), (3, True) ) l = lambdarepr(p) eval(h + l) assert l == "((((1) if (x > 0) else (2))) if (y > 0) else (3))" def test_sum__1(): # In each case, test eval() the lambdarepr() to make sure that # it evaluates to the same results as the symbolic expression s = Sum(x ** i, (i, a, b)) l = lambdarepr(s) assert l == "(builtins.sum(x**i for i in range(a, b+1)))" args = x, a, b f = lambdify(args, s) v = 2, 3, 8 assert f(*v) == s.subs(zip(args, v)).doit() def test_sum__2(): s = Sum(i * x, (i, a, b)) l = lambdarepr(s) assert l == "(builtins.sum(i*x for i in range(a, b+1)))" args = x, a, b f = lambdify(args, s) v = 2, 3, 8 assert f(*v) == s.subs(zip(args, v)).doit() def test_multiple_sums(): s = Sum(i * x + j, (i, a, b), (j, c, d)) l = lambdarepr(s) assert l == "(builtins.sum(i*x + j for i in range(a, b+1) for j in range(c, d+1)))" args = x, a, b, c, d f = lambdify(args, s) vals = 2, 3, 4, 5, 6 f_ref = s.subs(zip(args, vals)).doit() f_res = f(*vals) assert f_res == f_ref def test_sqrt(): prntr = LambdaPrinter({'standard' : 'python3'}) assert prntr._print_Pow(sqrt(x), rational=False) == 'sqrt(x)' assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)' def test_settings(): raises(TypeError, lambda: lambdarepr(sin(x), method="garbage")) def test_numexpr(): # test ITE rewrite as Piecewise from sympy.logic.boolalg import ITE expr = ITE(x > 0, True, False, evaluate=False) assert NumExprPrinter().doprint(expr) == \ "evaluate('where((x > 0), True, False)', truediv=True)" class CustomPrintedObject(Expr): def _lambdacode(self, printer): return 'lambda' def _tensorflowcode(self, printer): return 'tensorflow' def _numpycode(self, printer): return 'numpy' def _numexprcode(self, printer): return 'numexpr' def _mpmathcode(self, printer): return 'mpmath' def test_printmethod(): # In each case, printmethod is called to test # its working obj = CustomPrintedObject() assert LambdaPrinter().doprint(obj) == 'lambda' assert TensorflowPrinter().doprint(obj) == 'tensorflow' assert NumExprPrinter().doprint(obj) == "evaluate('numexpr', truediv=True)" assert NumExprPrinter().doprint(Piecewise((y, x >= 0), (z, x < 0))) == \ "evaluate('where((x >= 0), y, z)', truediv=True)"