import random from sympy.core.function import Derivative from sympy.core.symbol import symbols from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayAdd, \ PermuteDims, ArrayDiagonal from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt from sympy.external import import_module from sympy.functions import \ Abs, ceiling, exp, floor, sign, sin, asin, sqrt, cos, \ acos, tan, atan, atan2, cosh, acosh, sinh, asinh, tanh, atanh, \ re, im, arg, erf, loggamma, log from sympy.matrices import Matrix, MatrixBase, eye, randMatrix from sympy.matrices.expressions import \ Determinant, HadamardProduct, Inverse, MatrixSymbol, Trace from sympy.printing.tensorflow import tensorflow_code from sympy.tensor.array.expressions.conv_matrix_to_array import convert_matrix_to_array from sympy.utilities.lambdify import lambdify from sympy.testing.pytest import skip from sympy.testing.pytest import XFAIL tf = tensorflow = import_module("tensorflow") if tensorflow: # Hide Tensorflow warnings import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' M = MatrixSymbol("M", 3, 3) N = MatrixSymbol("N", 3, 3) P = MatrixSymbol("P", 3, 3) Q = MatrixSymbol("Q", 3, 3) x, y, z, t = symbols("x y z t") if tf is not None: llo = [[j for j in range(i, i+3)] for i in range(0, 9, 3)] m3x3 = tf.constant(llo) m3x3sympy = Matrix(llo) def _compare_tensorflow_matrix(variables, expr, use_float=False): f = lambdify(variables, expr, 'tensorflow') if not use_float: random_matrices = [randMatrix(v.rows, v.cols) for v in variables] else: random_matrices = [randMatrix(v.rows, v.cols)/100. for v in variables] graph = tf.Graph() r = None with graph.as_default(): random_variables = [eval(tensorflow_code(i)) for i in random_matrices] session = tf.compat.v1.Session(graph=graph) r = session.run(f(*random_variables)) e = expr.subs({k: v for k, v in zip(variables, random_matrices)}) e = e.doit() if e.is_Matrix: if not isinstance(e, MatrixBase): e = e.as_explicit() e = e.tolist() if not use_float: assert (r == e).all() else: r = [i for row in r for i in row] e = [i for row in e for i in row] assert all( abs(a-b) < 10**-(4-int(log(abs(a), 10))) for a, b in zip(r, e)) # Creating a custom inverse test. # See https://github.com/sympy/sympy/issues/18469 def _compare_tensorflow_matrix_inverse(variables, expr, use_float=False): f = lambdify(variables, expr, 'tensorflow') if not use_float: random_matrices = [eye(v.rows, v.cols)*4 for v in variables] else: random_matrices = [eye(v.rows, v.cols)*3.14 for v in variables] graph = tf.Graph() r = None with graph.as_default(): random_variables = [eval(tensorflow_code(i)) for i in random_matrices] session = tf.compat.v1.Session(graph=graph) r = session.run(f(*random_variables)) e = expr.subs({k: v for k, v in zip(variables, random_matrices)}) e = e.doit() if e.is_Matrix: if not isinstance(e, MatrixBase): e = e.as_explicit() e = e.tolist() if not use_float: assert (r == e).all() else: r = [i for row in r for i in row] e = [i for row in e for i in row] assert all( abs(a-b) < 10**-(4-int(log(abs(a), 10))) for a, b in zip(r, e)) def _compare_tensorflow_matrix_scalar(variables, expr): f = lambdify(variables, expr, 'tensorflow') random_matrices = [ randMatrix(v.rows, v.cols).evalf() / 100 for v in variables] graph = tf.Graph() r = None with graph.as_default(): random_variables = [eval(tensorflow_code(i)) for i in random_matrices] session = tf.compat.v1.Session(graph=graph) r = session.run(f(*random_variables)) e = expr.subs({k: v for k, v in zip(variables, random_matrices)}) e = e.doit() assert abs(r-e) < 10**-6 def _compare_tensorflow_scalar( variables, expr, rng=lambda: random.randint(0, 10)): f = lambdify(variables, expr, 'tensorflow') rvs = [rng() for v in variables] graph = tf.Graph() r = None with graph.as_default(): tf_rvs = [eval(tensorflow_code(i)) for i in rvs] session = tf.compat.v1.Session(graph=graph) r = session.run(f(*tf_rvs)) e = expr.subs({k: v for k, v in zip(variables, rvs)}).evalf().doit() assert abs(r-e) < 10**-6 def _compare_tensorflow_relational( variables, expr, rng=lambda: random.randint(0, 10)): f = lambdify(variables, expr, 'tensorflow') rvs = [rng() for v in variables] graph = tf.Graph() r = None with graph.as_default(): tf_rvs = [eval(tensorflow_code(i)) for i in rvs] session = tf.compat.v1.Session(graph=graph) r = session.run(f(*tf_rvs)) e = expr.subs({k: v for k, v in zip(variables, rvs)}).doit() assert r == e def test_tensorflow_printing(): assert tensorflow_code(eye(3)) == \ "tensorflow.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]])" expr = Matrix([[x, sin(y)], [exp(z), -t]]) assert tensorflow_code(expr) == \ "tensorflow.Variable(" \ "[[x, tensorflow.math.sin(y)]," \ " [tensorflow.math.exp(z), -t]])" # This (random) test is XFAIL because it fails occasionally # See https://github.com/sympy/sympy/issues/18469 @XFAIL def test_tensorflow_math(): if not tf: skip("TensorFlow not installed") expr = Abs(x) assert tensorflow_code(expr) == "tensorflow.math.abs(x)" _compare_tensorflow_scalar((x,), expr) expr = sign(x) assert tensorflow_code(expr) == "tensorflow.math.sign(x)" _compare_tensorflow_scalar((x,), expr) expr = ceiling(x) assert tensorflow_code(expr) == "tensorflow.math.ceil(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = floor(x) assert tensorflow_code(expr) == "tensorflow.math.floor(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = exp(x) assert tensorflow_code(expr) == "tensorflow.math.exp(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = sqrt(x) assert tensorflow_code(expr) == "tensorflow.math.sqrt(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = x ** 4 assert tensorflow_code(expr) == "tensorflow.math.pow(x, 4)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = cos(x) assert tensorflow_code(expr) == "tensorflow.math.cos(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = acos(x) assert tensorflow_code(expr) == "tensorflow.math.acos(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(0, 0.95)) expr = sin(x) assert tensorflow_code(expr) == "tensorflow.math.sin(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = asin(x) assert tensorflow_code(expr) == "tensorflow.math.asin(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = tan(x) assert tensorflow_code(expr) == "tensorflow.math.tan(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = atan(x) assert tensorflow_code(expr) == "tensorflow.math.atan(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = atan2(y, x) assert tensorflow_code(expr) == "tensorflow.math.atan2(y, x)" _compare_tensorflow_scalar((y, x), expr, rng=lambda: random.random()) expr = cosh(x) assert tensorflow_code(expr) == "tensorflow.math.cosh(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = acosh(x) assert tensorflow_code(expr) == "tensorflow.math.acosh(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2)) expr = sinh(x) assert tensorflow_code(expr) == "tensorflow.math.sinh(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2)) expr = asinh(x) assert tensorflow_code(expr) == "tensorflow.math.asinh(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2)) expr = tanh(x) assert tensorflow_code(expr) == "tensorflow.math.tanh(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2)) expr = atanh(x) assert tensorflow_code(expr) == "tensorflow.math.atanh(x)" _compare_tensorflow_scalar( (x,), expr, rng=lambda: random.uniform(-.5, .5)) expr = erf(x) assert tensorflow_code(expr) == "tensorflow.math.erf(x)" _compare_tensorflow_scalar( (x,), expr, rng=lambda: random.random()) expr = loggamma(x) assert tensorflow_code(expr) == "tensorflow.math.lgamma(x)" _compare_tensorflow_scalar( (x,), expr, rng=lambda: random.random()) def test_tensorflow_complexes(): assert tensorflow_code(re(x)) == "tensorflow.math.real(x)" assert tensorflow_code(im(x)) == "tensorflow.math.imag(x)" assert tensorflow_code(arg(x)) == "tensorflow.math.angle(x)" def test_tensorflow_relational(): if not tf: skip("TensorFlow not installed") expr = Eq(x, y) assert tensorflow_code(expr) == "tensorflow.math.equal(x, y)" _compare_tensorflow_relational((x, y), expr) expr = Ne(x, y) assert tensorflow_code(expr) == "tensorflow.math.not_equal(x, y)" _compare_tensorflow_relational((x, y), expr) expr = Ge(x, y) assert tensorflow_code(expr) == "tensorflow.math.greater_equal(x, y)" _compare_tensorflow_relational((x, y), expr) expr = Gt(x, y) assert tensorflow_code(expr) == "tensorflow.math.greater(x, y)" _compare_tensorflow_relational((x, y), expr) expr = Le(x, y) assert tensorflow_code(expr) == "tensorflow.math.less_equal(x, y)" _compare_tensorflow_relational((x, y), expr) expr = Lt(x, y) assert tensorflow_code(expr) == "tensorflow.math.less(x, y)" _compare_tensorflow_relational((x, y), expr) # This (random) test is XFAIL because it fails occasionally # See https://github.com/sympy/sympy/issues/18469 @XFAIL def test_tensorflow_matrices(): if not tf: skip("TensorFlow not installed") expr = M assert tensorflow_code(expr) == "M" _compare_tensorflow_matrix((M,), expr) expr = M + N assert tensorflow_code(expr) == "tensorflow.math.add(M, N)" _compare_tensorflow_matrix((M, N), expr) expr = M * N assert tensorflow_code(expr) == "tensorflow.linalg.matmul(M, N)" _compare_tensorflow_matrix((M, N), expr) expr = HadamardProduct(M, N) assert tensorflow_code(expr) == "tensorflow.math.multiply(M, N)" _compare_tensorflow_matrix((M, N), expr) expr = M*N*P*Q assert tensorflow_code(expr) == \ "tensorflow.linalg.matmul(" \ "tensorflow.linalg.matmul(" \ "tensorflow.linalg.matmul(M, N), P), Q)" _compare_tensorflow_matrix((M, N, P, Q), expr) expr = M**3 assert tensorflow_code(expr) == \ "tensorflow.linalg.matmul(tensorflow.linalg.matmul(M, M), M)" _compare_tensorflow_matrix((M,), expr) expr = Trace(M) assert tensorflow_code(expr) == "tensorflow.linalg.trace(M)" _compare_tensorflow_matrix((M,), expr) expr = Determinant(M) assert tensorflow_code(expr) == "tensorflow.linalg.det(M)" _compare_tensorflow_matrix_scalar((M,), expr) expr = Inverse(M) assert tensorflow_code(expr) == "tensorflow.linalg.inv(M)" _compare_tensorflow_matrix_inverse((M,), expr, use_float=True) expr = M.T assert tensorflow_code(expr, tensorflow_version='1.14') == \ "tensorflow.linalg.matrix_transpose(M)" assert tensorflow_code(expr, tensorflow_version='1.13') == \ "tensorflow.matrix_transpose(M)" _compare_tensorflow_matrix((M,), expr) def test_codegen_einsum(): if not tf: skip("TensorFlow not installed") graph = tf.Graph() with graph.as_default(): session = tf.compat.v1.Session(graph=graph) M = MatrixSymbol("M", 2, 2) N = MatrixSymbol("N", 2, 2) cg = convert_matrix_to_array(M * N) f = lambdify((M, N), cg, 'tensorflow') ma = tf.constant([[1, 2], [3, 4]]) mb = tf.constant([[1,-2], [-1, 3]]) y = session.run(f(ma, mb)) c = session.run(tf.matmul(ma, mb)) assert (y == c).all() def test_codegen_extra(): if not tf: skip("TensorFlow not installed") graph = tf.Graph() with graph.as_default(): session = tf.compat.v1.Session() M = MatrixSymbol("M", 2, 2) N = MatrixSymbol("N", 2, 2) P = MatrixSymbol("P", 2, 2) Q = MatrixSymbol("Q", 2, 2) ma = tf.constant([[1, 2], [3, 4]]) mb = tf.constant([[1,-2], [-1, 3]]) mc = tf.constant([[2, 0], [1, 2]]) md = tf.constant([[1,-1], [4, 7]]) cg = ArrayTensorProduct(M, N) assert tensorflow_code(cg) == \ 'tensorflow.linalg.einsum("ab,cd", M, N)' f = lambdify((M, N), cg, 'tensorflow') y = session.run(f(ma, mb)) c = session.run(tf.einsum("ij,kl", ma, mb)) assert (y == c).all() cg = ArrayAdd(M, N) assert tensorflow_code(cg) == 'tensorflow.math.add(M, N)' f = lambdify((M, N), cg, 'tensorflow') y = session.run(f(ma, mb)) c = session.run(ma + mb) assert (y == c).all() cg = ArrayAdd(M, N, P) assert tensorflow_code(cg) == \ 'tensorflow.math.add(tensorflow.math.add(M, N), P)' f = lambdify((M, N, P), cg, 'tensorflow') y = session.run(f(ma, mb, mc)) c = session.run(ma + mb + mc) assert (y == c).all() cg = ArrayAdd(M, N, P, Q) assert tensorflow_code(cg) == \ 'tensorflow.math.add(' \ 'tensorflow.math.add(tensorflow.math.add(M, N), P), Q)' f = lambdify((M, N, P, Q), cg, 'tensorflow') y = session.run(f(ma, mb, mc, md)) c = session.run(ma + mb + mc + md) assert (y == c).all() cg = PermuteDims(M, [1, 0]) assert tensorflow_code(cg) == 'tensorflow.transpose(M, [1, 0])' f = lambdify((M,), cg, 'tensorflow') y = session.run(f(ma)) c = session.run(tf.transpose(ma)) assert (y == c).all() cg = PermuteDims(ArrayTensorProduct(M, N), [1, 2, 3, 0]) assert tensorflow_code(cg) == \ 'tensorflow.transpose(' \ 'tensorflow.linalg.einsum("ab,cd", M, N), [1, 2, 3, 0])' f = lambdify((M, N), cg, 'tensorflow') y = session.run(f(ma, mb)) c = session.run(tf.transpose(tf.einsum("ab,cd", ma, mb), [1, 2, 3, 0])) assert (y == c).all() cg = ArrayDiagonal(ArrayTensorProduct(M, N), (1, 2)) assert tensorflow_code(cg) == \ 'tensorflow.linalg.einsum("ab,bc->acb", M, N)' f = lambdify((M, N), cg, 'tensorflow') y = session.run(f(ma, mb)) c = session.run(tf.einsum("ab,bc->acb", ma, mb)) assert (y == c).all() def test_MatrixElement_printing(): A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) assert tensorflow_code(A[0, 0]) == "A[0, 0]" assert tensorflow_code(3 * A[0, 0]) == "3*A[0, 0]" F = C[0, 0].subs(C, A - B) assert tensorflow_code(F) == "(tensorflow.math.add((-1)*B, A))[0, 0]" def test_tensorflow_Derivative(): expr = Derivative(sin(x), x) assert tensorflow_code(expr) == \ "tensorflow.gradients(tensorflow.math.sin(x), x)[0]"