from sympy.core.function import (Function, Lambda, expand) from sympy.core.numbers import (I, Rational) from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.functions.combinatorial.factorials import (rf, binomial, factorial) from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.polys.polytools import factor from sympy.solvers.recurr import rsolve, rsolve_hyper, rsolve_poly, rsolve_ratio from sympy.testing.pytest import raises, slow from sympy.abc import a, b y = Function('y') n, k = symbols('n,k', integer=True) C0, C1, C2 = symbols('C0,C1,C2') def test_rsolve_poly(): assert rsolve_poly([-1, -1, 1], 0, n) == 0 assert rsolve_poly([-1, -1, 1], 1, n) == -1 assert rsolve_poly([-1, n + 1], n, n) == 1 assert rsolve_poly([-1, 1], n, n) == C0 + (n**2 - n)/2 assert rsolve_poly([-n - 1, n], 1, n) == C1*n - 1 assert rsolve_poly([-4*n - 2, 1], 4*n + 1, n) == -1 assert rsolve_poly([-1, 1], n**5 + n**3, n) == \ C0 - n**3 / 2 - n**5 / 2 + n**2 / 6 + n**6 / 6 + 2*n**4 / 3 def test_rsolve_ratio(): solution = rsolve_ratio([-2*n**3 + n**2 + 2*n - 1, 2*n**3 + n**2 - 6*n, -2*n**3 - 11*n**2 - 18*n - 9, 2*n**3 + 13*n**2 + 22*n + 8], 0, n) assert solution in [ C1*((-2*n + 3)/(n**2 - 1))/3, (S.Half)*(C1*(-3 + 2*n)/(-1 + n**2)), (S.Half)*(C1*( 3 - 2*n)/( 1 - n**2)), (S.Half)*(C2*(-3 + 2*n)/(-1 + n**2)), (S.Half)*(C2*( 3 - 2*n)/( 1 - n**2)), ] def test_rsolve_hyper(): assert rsolve_hyper([-1, -1, 1], 0, n) in [ C0*(S.Half - S.Half*sqrt(5))**n + C1*(S.Half + S.Half*sqrt(5))**n, C1*(S.Half - S.Half*sqrt(5))**n + C0*(S.Half + S.Half*sqrt(5))**n, ] assert rsolve_hyper([n**2 - 2, -2*n - 1, 1], 0, n) in [ C0*rf(sqrt(2), n) + C1*rf(-sqrt(2), n), C1*rf(sqrt(2), n) + C0*rf(-sqrt(2), n), ] assert rsolve_hyper([n**2 - k, -2*n - 1, 1], 0, n) in [ C0*rf(sqrt(k), n) + C1*rf(-sqrt(k), n), C1*rf(sqrt(k), n) + C0*rf(-sqrt(k), n), ] assert rsolve_hyper( [2*n*(n + 1), -n**2 - 3*n + 2, n - 1], 0, n) == C1*factorial(n) + C0*2**n assert rsolve_hyper( [n + 2, -(2*n + 3)*(17*n**2 + 51*n + 39), n + 1], 0, n) == None assert rsolve_hyper([-n - 1, -1, 1], 0, n) == None assert rsolve_hyper([-1, 1], n, n).expand() == C0 + n**2/2 - n/2 assert rsolve_hyper([-1, 1], 1 + n, n).expand() == C0 + n**2/2 + n/2 assert rsolve_hyper([-1, 1], 3*(n + n**2), n).expand() == C0 + n**3 - n assert rsolve_hyper([-a, 1],0,n).expand() == C0*a**n assert rsolve_hyper([-a, 0, 1], 0, n).expand() == (-1)**n*C1*a**(n/2) + C0*a**(n/2) assert rsolve_hyper([1, 1, 1], 0, n).expand() == \ C0*(Rational(-1, 2) - sqrt(3)*I/2)**n + C1*(Rational(-1, 2) + sqrt(3)*I/2)**n assert rsolve_hyper([1, -2*n/a - 2/a, 1], 0, n) is None def recurrence_term(c, f): """Compute RHS of recurrence in f(n) with coefficients in c.""" return sum(c[i]*f.subs(n, n + i) for i in range(len(c))) def test_rsolve_bulk(): """Some bulk-generated tests.""" funcs = [ n, n + 1, n**2, n**3, n**4, n + n**2, 27*n + 52*n**2 - 3* n**3 + 12*n**4 - 52*n**5 ] coeffs = [ [-2, 1], [-2, -1, 1], [-1, 1, 1, -1, 1], [-n, 1], [n**2 - n + 12, 1] ] for p in funcs: # compute difference for c in coeffs: q = recurrence_term(c, p) if p.is_polynomial(n): assert rsolve_poly(c, q, n) == p # See issue 3956: #if p.is_hypergeometric(n): # assert rsolve_hyper(c, q, n) == p def test_rsolve(): f = y(n + 2) - y(n + 1) - y(n) h = sqrt(5)*(S.Half + S.Half*sqrt(5))**n \ - sqrt(5)*(S.Half - S.Half*sqrt(5))**n assert rsolve(f, y(n)) in [ C0*(S.Half - S.Half*sqrt(5))**n + C1*(S.Half + S.Half*sqrt(5))**n, C1*(S.Half - S.Half*sqrt(5))**n + C0*(S.Half + S.Half*sqrt(5))**n, ] assert rsolve(f, y(n), [0, 5]) == h assert rsolve(f, y(n), {0: 0, 1: 5}) == h assert rsolve(f, y(n), {y(0): 0, y(1): 5}) == h assert rsolve(y(n) - y(n - 1) - y(n - 2), y(n), [0, 5]) == h assert rsolve(Eq(y(n), y(n - 1) + y(n - 2)), y(n), [0, 5]) == h assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 f = (n - 1)*y(n + 2) - (n**2 + 3*n - 2)*y(n + 1) + 2*n*(n + 1)*y(n) g = C1*factorial(n) + C0*2**n h = -3*factorial(n) + 3*2**n assert rsolve(f, y(n)) == g assert rsolve(f, y(n), []) == g assert rsolve(f, y(n), {}) == g assert rsolve(f, y(n), [0, 3]) == h assert rsolve(f, y(n), {0: 0, 1: 3}) == h assert rsolve(f, y(n), {y(0): 0, y(1): 3}) == h assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 f = y(n) - y(n - 1) - 2 assert rsolve(f, y(n), {y(0): 0}) == 2*n assert rsolve(f, y(n), {y(0): 1}) == 2*n + 1 assert rsolve(f, y(n), {y(0): 0, y(1): 1}) is None assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 f = 3*y(n - 1) - y(n) - 1 assert rsolve(f, y(n), {y(0): 0}) == -3**n/2 + S.Half assert rsolve(f, y(n), {y(0): 1}) == 3**n/2 + S.Half assert rsolve(f, y(n), {y(0): 2}) == 3*3**n/2 + S.Half assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 f = y(n) - 1/n*y(n - 1) assert rsolve(f, y(n)) == C0/factorial(n) assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 f = y(n) - 1/n*y(n - 1) - 1 assert rsolve(f, y(n)) is None f = 2*y(n - 1) + (1 - n)*y(n)/n assert rsolve(f, y(n), {y(1): 1}) == 2**(n - 1)*n assert rsolve(f, y(n), {y(1): 2}) == 2**(n - 1)*n*2 assert rsolve(f, y(n), {y(1): 3}) == 2**(n - 1)*n*3 assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 f = (n - 1)*(n - 2)*y(n + 2) - (n + 1)*(n + 2)*y(n) assert rsolve(f, y(n), {y(3): 6, y(4): 24}) == n*(n - 1)*(n - 2) assert rsolve( f, y(n), {y(3): 6, y(4): -24}) == -n*(n - 1)*(n - 2)*(-1)**(n) assert f.subs(y, Lambda(k, rsolve(f, y(n)).subs(n, k))).simplify() == 0 assert rsolve(Eq(y(n + 1), a*y(n)), y(n), {y(1): a}).simplify() == a**n assert rsolve(y(n) - a*y(n-2),y(n), \ {y(1): sqrt(a)*(a + b), y(2): a*(a - b)}).simplify() == \ a**(n/2)*(-(-1)**n*b + a) f = (-16*n**2 + 32*n - 12)*y(n - 1) + (4*n**2 - 12*n + 9)*y(n) yn = rsolve(f, y(n), {y(1): binomial(2*n + 1, 3)}) sol = 2**(2*n)*n*(2*n - 1)**2*(2*n + 1)/12 assert factor(expand(yn, func=True)) == sol sol = rsolve(y(n) + a*(y(n + 1) + y(n - 1))/2, y(n)) Y = lambda i: sol.subs(n, i) assert (Y(n) + a*(Y(n + 1) + Y(n - 1))/2).expand().cancel() == 0 assert rsolve((k + 1)*y(k), y(k)) is None assert (rsolve((k + 1)*y(k) + (k + 3)*y(k + 1) + (k + 5)*y(k + 2), y(k)) is None) assert rsolve(y(n) + y(n + 1) + 2**n + 3**n, y(n)) == (-1)**n*C0 - 2**n/3 - 3**n/4 def test_rsolve_raises(): x = Function('x') raises(ValueError, lambda: rsolve(y(n) - y(k + 1), y(n))) raises(ValueError, lambda: rsolve(y(n) - y(n + 1), x(n))) raises(ValueError, lambda: rsolve(y(n) - x(n + 1), y(n))) raises(ValueError, lambda: rsolve(y(n) - sqrt(n)*y(n + 1), y(n))) raises(ValueError, lambda: rsolve(y(n) - y(n + 1), y(n), {x(0): 0})) raises(ValueError, lambda: rsolve(y(n) + y(n + 1) + 2**n + cos(n), y(n))) def test_issue_6844(): f = y(n + 2) - y(n + 1) + y(n)/4 assert rsolve(f, y(n)) == 2**(-n)*(C0 + C1*n) assert rsolve(f, y(n), {y(0): 0, y(1): 1}) == 2*2**(-n)*n def test_issue_18751(): r = Symbol('r', positive=True) theta = Symbol('theta', real=True) f = y(n) - 2 * r * cos(theta) * y(n - 1) + r**2 * y(n - 2) assert rsolve(f, y(n)) == \ C0*(r*(cos(theta) - I*Abs(sin(theta))))**n + C1*(r*(cos(theta) + I*Abs(sin(theta))))**n def test_constant_naming(): #issue 8697 assert rsolve(y(n+3) - y(n+2) - y(n+1) + y(n), y(n)) == (-1)**n*C0+C1+C2*n assert rsolve(y(n+3)+3*y(n+2)+3*y(n+1)+y(n), y(n)).expand() == C0*(-1)**n + (-1)**n*C1*n + (-1)**n*C2*n**2 assert rsolve(y(n) - 2*y(n - 3) + 5*y(n - 2) - 4*y(n - 1),y(n),[1,3,8]) == 3*2**n - n - 2 #issue 19630 assert rsolve(y(n+3) - 3*y(n+1) + 2*y(n), y(n), {y(1):0, y(2):8, y(3):-2}) == (-2)**n + 2*n @slow def test_issue_15751(): f = y(n) + 21*y(n + 1) - 273*y(n + 2) - 1092*y(n + 3) + 1820*y(n + 4) + 1092*y(n + 5) - 273*y(n + 6) - 21*y(n + 7) + y(n + 8) assert rsolve(f, y(n)) is not None def test_issue_17990(): f = -10*y(n) + 4*y(n + 1) + 6*y(n + 2) + 46*y(n + 3) sol = rsolve(f, y(n)) expected = C0*((86*18**(S(1)/3)/69 + (-12 + (-1 + sqrt(3)*I)*(290412 + 3036*sqrt(9165))**(S(1)/3))*(1 - sqrt(3)*I)*(24201 + 253*sqrt(9165))** (S(1)/3)/276)/((1 - sqrt(3)*I)*(24201 + 253*sqrt(9165))**(S(1)/3)) )**n + C1*((86*18**(S(1)/3)/69 + (-12 + (-1 - sqrt(3)*I)*(290412 + 3036 *sqrt(9165))**(S(1)/3))*(1 + sqrt(3)*I)*(24201 + 253*sqrt(9165))** (S(1)/3)/276)/((1 + sqrt(3)*I)*(24201 + 253*sqrt(9165))**(S(1)/3)) )**n + C2*(-43*18**(S(1)/3)/(69*(24201 + 253*sqrt(9165))**(S(1)/3)) - S(1)/23 + (290412 + 3036*sqrt(9165))**(S(1)/3)/138)**n assert sol == expected e = sol.subs({C0: 1, C1: 1, C2: 1, n: 1}).evalf() assert abs(e + 0.130434782608696) < 1e-13