from sympy.concrete.products import Product from sympy.concrete.summations import Sum from sympy.core.numbers import (Rational, oo, pi) from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.functions.combinatorial.factorials import (RisingFactorial, factorial) from sympy.functions.elementary.complexes import polar_lift from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.special.bessel import besselk from sympy.functions.special.gamma_functions import gamma from sympy.matrices.dense import eye from sympy.matrices.expressions.determinant import Determinant from sympy.sets.fancysets import Range from sympy.sets.sets import (Interval, ProductSet) from sympy.simplify.simplify import simplify from sympy.tensor.indexed import (Indexed, IndexedBase) from sympy.core.numbers import comp from sympy.integrals.integrals import integrate from sympy.matrices import Matrix, MatrixSymbol from sympy.matrices.expressions.matexpr import MatrixElement from sympy.stats import density, median, marginal_distribution, Normal, Laplace, E, sample from sympy.stats.joint_rv_types import (JointRV, MultivariateNormalDistribution, JointDistributionHandmade, MultivariateT, NormalGamma, GeneralizedMultivariateLogGammaOmega as GMVLGO, MultivariateBeta, GeneralizedMultivariateLogGamma as GMVLG, MultivariateEwens, Multinomial, NegativeMultinomial, MultivariateNormal, MultivariateLaplace) from sympy.testing.pytest import raises, XFAIL, skip from sympy.external import import_module from sympy.abc import x, y def test_Normal(): m = Normal('A', [1, 2], [[1, 0], [0, 1]]) A = MultivariateNormal('A', [1, 2], [[1, 0], [0, 1]]) assert m == A assert density(m)(1, 2) == 1/(2*pi) assert m.pspace.distribution.set == ProductSet(S.Reals, S.Reals) raises (ValueError, lambda:m[2]) n = Normal('B', [1, 2, 3], [[1, 0, 0], [0, 1, 0], [0, 0, 1]]) p = Normal('C', Matrix([1, 2]), Matrix([[1, 0], [0, 1]])) assert density(m)(x, y) == density(p)(x, y) assert marginal_distribution(n, 0, 1)(1, 2) == 1/(2*pi) raises(ValueError, lambda: marginal_distribution(m)) assert integrate(density(m)(x, y), (x, -oo, oo), (y, -oo, oo)).evalf() == 1 N = Normal('N', [1, 2], [[x, 0], [0, y]]) assert density(N)(0, 0) == exp(-((4*x + y)/(2*x*y)))/(2*pi*sqrt(x*y)) raises (ValueError, lambda: Normal('M', [1, 2], [[1, 1], [1, -1]])) # symbolic n = symbols('n', integer=True, positive=True) mu = MatrixSymbol('mu', n, 1) sigma = MatrixSymbol('sigma', n, n) X = Normal('X', mu, sigma) assert density(X) == MultivariateNormalDistribution(mu, sigma) raises (NotImplementedError, lambda: median(m)) # Below tests should work after issue #17267 is resolved # assert E(X) == mu # assert variance(X) == sigma # test symbolic multivariate normal densities n = 3 Sg = MatrixSymbol('Sg', n, n) mu = MatrixSymbol('mu', n, 1) obs = MatrixSymbol('obs', n, 1) X = MultivariateNormal('X', mu, Sg) density_X = density(X) eval_a = density_X(obs).subs({Sg: eye(3), mu: Matrix([0, 0, 0]), obs: Matrix([0, 0, 0])}).doit() eval_b = density_X(0, 0, 0).subs({Sg: eye(3), mu: Matrix([0, 0, 0])}).doit() assert eval_a == sqrt(2)/(4*pi**Rational(3/2)) assert eval_b == sqrt(2)/(4*pi**Rational(3/2)) n = symbols('n', integer=True, positive=True) Sg = MatrixSymbol('Sg', n, n) mu = MatrixSymbol('mu', n, 1) obs = MatrixSymbol('obs', n, 1) X = MultivariateNormal('X', mu, Sg) density_X_at_obs = density(X)(obs) expected_density = MatrixElement( exp((S(1)/2) * (mu.T - obs.T) * Sg**(-1) * (-mu + obs)) / \ sqrt((2*pi)**n * Determinant(Sg)), 0, 0) assert density_X_at_obs == expected_density def test_MultivariateTDist(): t1 = MultivariateT('T', [0, 0], [[1, 0], [0, 1]], 2) assert(density(t1))(1, 1) == 1/(8*pi) assert t1.pspace.distribution.set == ProductSet(S.Reals, S.Reals) assert integrate(density(t1)(x, y), (x, -oo, oo), \ (y, -oo, oo)).evalf() == 1 raises(ValueError, lambda: MultivariateT('T', [1, 2], [[1, 1], [1, -1]], 1)) t2 = MultivariateT('t2', [1, 2], [[x, 0], [0, y]], 1) assert density(t2)(1, 2) == 1/(2*pi*sqrt(x*y)) def test_multivariate_laplace(): raises(ValueError, lambda: Laplace('T', [1, 2], [[1, 2], [2, 1]])) L = Laplace('L', [1, 0], [[1, 0], [0, 1]]) L2 = MultivariateLaplace('L2', [1, 0], [[1, 0], [0, 1]]) assert density(L)(2, 3) == exp(2)*besselk(0, sqrt(39))/pi L1 = Laplace('L1', [1, 2], [[x, 0], [0, y]]) assert density(L1)(0, 1) == \ exp(2/y)*besselk(0, sqrt((2 + 4/y + 1/x)/y))/(pi*sqrt(x*y)) assert L.pspace.distribution.set == ProductSet(S.Reals, S.Reals) assert L.pspace.distribution == L2.pspace.distribution def test_NormalGamma(): ng = NormalGamma('G', 1, 2, 3, 4) assert density(ng)(1, 1) == 32*exp(-4)/sqrt(pi) assert ng.pspace.distribution.set == ProductSet(S.Reals, Interval(0, oo)) raises(ValueError, lambda:NormalGamma('G', 1, 2, 3, -1)) assert marginal_distribution(ng, 0)(1) == \ 3*sqrt(10)*gamma(Rational(7, 4))/(10*sqrt(pi)*gamma(Rational(5, 4))) assert marginal_distribution(ng, y)(1) == exp(Rational(-1, 4))/128 assert marginal_distribution(ng,[0,1])(x) == x**2*exp(-x/4)/128 def test_GeneralizedMultivariateLogGammaDistribution(): h = S.Half omega = Matrix([[1, h, h, h], [h, 1, h, h], [h, h, 1, h], [h, h, h, 1]]) v, l, mu = (4, [1, 2, 3, 4], [1, 2, 3, 4]) y_1, y_2, y_3, y_4 = symbols('y_1:5', real=True) delta = symbols('d', positive=True) G = GMVLGO('G', omega, v, l, mu) Gd = GMVLG('Gd', delta, v, l, mu) dend = ("d**4*Sum(4*24**(-n - 4)*(1 - d)**n*exp((n + 4)*(y_1 + 2*y_2 + 3*y_3 " "+ 4*y_4) - exp(y_1) - exp(2*y_2)/2 - exp(3*y_3)/3 - exp(4*y_4)/4)/" "(gamma(n + 1)*gamma(n + 4)**3), (n, 0, oo))") assert str(density(Gd)(y_1, y_2, y_3, y_4)) == dend den = ("5*2**(2/3)*5**(1/3)*Sum(4*24**(-n - 4)*(-2**(2/3)*5**(1/3)/4 + 1)**n*" "exp((n + 4)*(y_1 + 2*y_2 + 3*y_3 + 4*y_4) - exp(y_1) - exp(2*y_2)/2 - " "exp(3*y_3)/3 - exp(4*y_4)/4)/(gamma(n + 1)*gamma(n + 4)**3), (n, 0, oo))/64") assert str(density(G)(y_1, y_2, y_3, y_4)) == den marg = ("5*2**(2/3)*5**(1/3)*exp(4*y_1)*exp(-exp(y_1))*Integral(exp(-exp(4*G[3])" "/4)*exp(16*G[3])*Integral(exp(-exp(3*G[2])/3)*exp(12*G[2])*Integral(exp(" "-exp(2*G[1])/2)*exp(8*G[1])*Sum((-1/4)**n*(-4 + 2**(2/3)*5**(1/3" "))**n*exp(n*y_1)*exp(2*n*G[1])*exp(3*n*G[2])*exp(4*n*G[3])/(24**n*gamma(n + 1)" "*gamma(n + 4)**3), (n, 0, oo)), (G[1], -oo, oo)), (G[2], -oo, oo)), (G[3]" ", -oo, oo))/5308416") assert str(marginal_distribution(G, G[0])(y_1)) == marg omega_f1 = Matrix([[1, h, h]]) omega_f2 = Matrix([[1, h, h, h], [h, 1, 2, h], [h, h, 1, h], [h, h, h, 1]]) omega_f3 = Matrix([[6, h, h, h], [h, 1, 2, h], [h, h, 1, h], [h, h, h, 1]]) v_f = symbols("v_f", positive=False, real=True) l_f = [1, 2, v_f, 4] m_f = [v_f, 2, 3, 4] omega_f4 = Matrix([[1, h, h, h, h], [h, 1, h, h, h], [h, h, 1, h, h], [h, h, h, 1, h], [h, h, h, h, 1]]) l_f1 = [1, 2, 3, 4, 5] omega_f5 = Matrix([[1]]) mu_f5 = l_f5 = [1] raises(ValueError, lambda: GMVLGO('G', omega_f1, v, l, mu)) raises(ValueError, lambda: GMVLGO('G', omega_f2, v, l, mu)) raises(ValueError, lambda: GMVLGO('G', omega_f3, v, l, mu)) raises(ValueError, lambda: GMVLGO('G', omega, v_f, l, mu)) raises(ValueError, lambda: GMVLGO('G', omega, v, l_f, mu)) raises(ValueError, lambda: GMVLGO('G', omega, v, l, m_f)) raises(ValueError, lambda: GMVLGO('G', omega_f4, v, l, mu)) raises(ValueError, lambda: GMVLGO('G', omega, v, l_f1, mu)) raises(ValueError, lambda: GMVLGO('G', omega_f5, v, l_f5, mu_f5)) raises(ValueError, lambda: GMVLG('G', Rational(3, 2), v, l, mu)) def test_MultivariateBeta(): a1, a2 = symbols('a1, a2', positive=True) a1_f, a2_f = symbols('a1, a2', positive=False, real=True) mb = MultivariateBeta('B', [a1, a2]) mb_c = MultivariateBeta('C', a1, a2) assert density(mb)(1, 2) == S(2)**(a2 - 1)*gamma(a1 + a2)/\ (gamma(a1)*gamma(a2)) assert marginal_distribution(mb_c, 0)(3) == S(3)**(a1 - 1)*gamma(a1 + a2)/\ (a2*gamma(a1)*gamma(a2)) raises(ValueError, lambda: MultivariateBeta('b1', [a1_f, a2])) raises(ValueError, lambda: MultivariateBeta('b2', [a1, a2_f])) raises(ValueError, lambda: MultivariateBeta('b3', [0, 0])) raises(ValueError, lambda: MultivariateBeta('b4', [a1_f, a2_f])) assert mb.pspace.distribution.set == ProductSet(Interval(0, 1), Interval(0, 1)) def test_MultivariateEwens(): n, theta, i = symbols('n theta i', positive=True) # tests for integer dimensions theta_f = symbols('t_f', negative=True) a = symbols('a_1:4', positive = True, integer = True) ed = MultivariateEwens('E', 3, theta) assert density(ed)(a[0], a[1], a[2]) == Piecewise((6*2**(-a[1])*3**(-a[2])* theta**a[0]*theta**a[1]*theta**a[2]/ (theta*(theta + 1)*(theta + 2)* factorial(a[0])*factorial(a[1])* factorial(a[2])), Eq(a[0] + 2*a[1] + 3*a[2], 3)), (0, True)) assert marginal_distribution(ed, ed[1])(a[1]) == Piecewise((6*2**(-a[1])* theta**a[1]/((theta + 1)* (theta + 2)*factorial(a[1])), Eq(2*a[1] + 1, 3)), (0, True)) raises(ValueError, lambda: MultivariateEwens('e1', 5, theta_f)) assert ed.pspace.distribution.set == ProductSet(Range(0, 4, 1), Range(0, 2, 1), Range(0, 2, 1)) # tests for symbolic dimensions eds = MultivariateEwens('E', n, theta) a = IndexedBase('a') j, k = symbols('j, k') den = Piecewise((factorial(n)*Product(theta**a[j]*(j + 1)**(-a[j])/ factorial(a[j]), (j, 0, n - 1))/RisingFactorial(theta, n), Eq(n, Sum((k + 1)*a[k], (k, 0, n - 1)))), (0, True)) assert density(eds)(a).dummy_eq(den) def test_Multinomial(): n, x1, x2, x3, x4 = symbols('n, x1, x2, x3, x4', nonnegative=True, integer=True) p1, p2, p3, p4 = symbols('p1, p2, p3, p4', positive=True) p1_f, n_f = symbols('p1_f, n_f', negative=True) M = Multinomial('M', n, [p1, p2, p3, p4]) C = Multinomial('C', 3, p1, p2, p3) f = factorial assert density(M)(x1, x2, x3, x4) == Piecewise((p1**x1*p2**x2*p3**x3*p4**x4* f(n)/(f(x1)*f(x2)*f(x3)*f(x4)), Eq(n, x1 + x2 + x3 + x4)), (0, True)) assert marginal_distribution(C, C[0])(x1).subs(x1, 1) ==\ 3*p1*p2**2 +\ 6*p1*p2*p3 +\ 3*p1*p3**2 raises(ValueError, lambda: Multinomial('b1', 5, [p1, p2, p3, p1_f])) raises(ValueError, lambda: Multinomial('b2', n_f, [p1, p2, p3, p4])) raises(ValueError, lambda: Multinomial('b3', n, 0.5, 0.4, 0.3, 0.1)) def test_NegativeMultinomial(): k0, x1, x2, x3, x4 = symbols('k0, x1, x2, x3, x4', nonnegative=True, integer=True) p1, p2, p3, p4 = symbols('p1, p2, p3, p4', positive=True) p1_f = symbols('p1_f', negative=True) N = NegativeMultinomial('N', 4, [p1, p2, p3, p4]) C = NegativeMultinomial('C', 4, 0.1, 0.2, 0.3) g = gamma f = factorial assert simplify(density(N)(x1, x2, x3, x4) - p1**x1*p2**x2*p3**x3*p4**x4*(-p1 - p2 - p3 - p4 + 1)**4*g(x1 + x2 + x3 + x4 + 4)/(6*f(x1)*f(x2)*f(x3)*f(x4))) is S.Zero assert comp(marginal_distribution(C, C[0])(1).evalf(), 0.33, .01) raises(ValueError, lambda: NegativeMultinomial('b1', 5, [p1, p2, p3, p1_f])) raises(ValueError, lambda: NegativeMultinomial('b2', k0, 0.5, 0.4, 0.3, 0.4)) assert N.pspace.distribution.set == ProductSet(Range(0, oo, 1), Range(0, oo, 1), Range(0, oo, 1), Range(0, oo, 1)) def test_JointPSpace_marginal_distribution(): T = MultivariateT('T', [0, 0], [[1, 0], [0, 1]], 2) got = marginal_distribution(T, T[1])(x) ans = sqrt(2)*(x**2/2 + 1)/(4*polar_lift(x**2/2 + 1)**(S(5)/2)) assert got == ans, got assert integrate(marginal_distribution(T, 1)(x), (x, -oo, oo)) == 1 t = MultivariateT('T', [0, 0, 0], [[1, 0, 0], [0, 1, 0], [0, 0, 1]], 3) assert comp(marginal_distribution(t, 0)(1).evalf(), 0.2, .01) def test_JointRV(): x1, x2 = (Indexed('x', i) for i in (1, 2)) pdf = exp(-x1**2/2 + x1 - x2**2/2 - S.Half)/(2*pi) X = JointRV('x', pdf) assert density(X)(1, 2) == exp(-2)/(2*pi) assert isinstance(X.pspace.distribution, JointDistributionHandmade) assert marginal_distribution(X, 0)(2) == sqrt(2)*exp(Rational(-1, 2))/(2*sqrt(pi)) def test_expectation(): m = Normal('A', [x, y], [[1, 0], [0, 1]]) assert simplify(E(m[1])) == y @XFAIL def test_joint_vector_expectation(): m = Normal('A', [x, y], [[1, 0], [0, 1]]) assert E(m) == (x, y) def test_sample_numpy(): distribs_numpy = [ MultivariateNormal("M", [3, 4], [[2, 1], [1, 2]]), MultivariateBeta("B", [0.4, 5, 15, 50, 203]), Multinomial("N", 50, [0.3, 0.2, 0.1, 0.25, 0.15]) ] size = 3 numpy = import_module('numpy') if not numpy: skip('Numpy is not installed. Abort tests for _sample_numpy.') else: for X in distribs_numpy: samps = sample(X, size=size, library='numpy') for sam in samps: assert tuple(sam) in X.pspace.distribution.set N_c = NegativeMultinomial('N', 3, 0.1, 0.1, 0.1) raises(NotImplementedError, lambda: sample(N_c, library='numpy')) def test_sample_scipy(): distribs_scipy = [ MultivariateNormal("M", [0, 0], [[0.1, 0.025], [0.025, 0.1]]), MultivariateBeta("B", [0.4, 5, 15]), Multinomial("N", 8, [0.3, 0.2, 0.1, 0.4]) ] size = 3 scipy = import_module('scipy') if not scipy: skip('Scipy not installed. Abort tests for _sample_scipy.') else: for X in distribs_scipy: samps = sample(X, size=size) samps2 = sample(X, size=(2, 2)) for sam in samps: assert tuple(sam) in X.pspace.distribution.set for i in range(2): for j in range(2): assert tuple(samps2[i][j]) in X.pspace.distribution.set N_c = NegativeMultinomial('N', 3, 0.1, 0.1, 0.1) raises(NotImplementedError, lambda: sample(N_c)) def test_sample_pymc3(): distribs_pymc3 = [ MultivariateNormal("M", [5, 2], [[1, 0], [0, 1]]), MultivariateBeta("B", [0.4, 5, 15]), Multinomial("N", 4, [0.3, 0.2, 0.1, 0.4]) ] size = 3 pymc3 = import_module('pymc3') if not pymc3: skip('PyMC3 is not installed. Abort tests for _sample_pymc3.') else: for X in distribs_pymc3: samps = sample(X, size=size, library='pymc3') for sam in samps: assert tuple(sam.flatten()) in X.pspace.distribution.set N_c = NegativeMultinomial('N', 3, 0.1, 0.1, 0.1) raises(NotImplementedError, lambda: sample(N_c, library='pymc3')) def test_sample_seed(): x1, x2 = (Indexed('x', i) for i in (1, 2)) pdf = exp(-x1**2/2 + x1 - x2**2/2 - S.Half)/(2*pi) X = JointRV('x', pdf) libraries = ['scipy', 'numpy', 'pymc3'] for lib in libraries: try: imported_lib = import_module(lib) if imported_lib: s0, s1, s2 = [], [], [] s0 = sample(X, size=10, library=lib, seed=0) s1 = sample(X, size=10, library=lib, seed=0) s2 = sample(X, size=10, library=lib, seed=1) assert all(s0 == s1) assert all(s1 != s2) except NotImplementedError: continue def test_issue_21057(): m = Normal("x", [0, 0], [[0, 0], [0, 0]]) n = MultivariateNormal("x", [0, 0], [[0, 0], [0, 0]]) p = Normal("x", [0, 0], [[0, 0], [0, 1]]) assert m == n libraries = ['scipy', 'numpy', 'pymc3'] for library in libraries: try: imported_lib = import_module(library) if imported_lib: s1 = sample(m, size=8, library=library) s2 = sample(n, size=8, library=library) s3 = sample(p, size=8, library=library) assert tuple(s1.flatten()) == tuple(s2.flatten()) for s in s3: assert tuple(s.flatten()) in p.pspace.distribution.set except NotImplementedError: continue