from sympy.stats import Expectation, Normal, Variance, Covariance from sympy.testing.pytest import raises from sympy.core.symbol import symbols from sympy.matrices.common import ShapeError from sympy.matrices.dense import Matrix from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.matrices.expressions.special import ZeroMatrix from sympy.stats.rv import RandomMatrixSymbol from sympy.stats.symbolic_multivariate_probability import (ExpectationMatrix, VarianceMatrix, CrossCovarianceMatrix) j, k = symbols("j,k") A = MatrixSymbol("A", k, k) B = MatrixSymbol("B", k, k) C = MatrixSymbol("C", k, k) D = MatrixSymbol("D", k, k) a = MatrixSymbol("a", k, 1) b = MatrixSymbol("b", k, 1) A2 = MatrixSymbol("A2", 2, 2) B2 = MatrixSymbol("B2", 2, 2) X = RandomMatrixSymbol("X", k, 1) Y = RandomMatrixSymbol("Y", k, 1) Z = RandomMatrixSymbol("Z", k, 1) W = RandomMatrixSymbol("W", k, 1) R = RandomMatrixSymbol("R", k, k) X2 = RandomMatrixSymbol("X2", 2, 1) normal = Normal("normal", 0, 1) m1 = Matrix([ [1, j*Normal("normal2", 2, 1)], [normal, 0] ]) def test_multivariate_expectation(): expr = Expectation(a) assert expr == Expectation(a) == ExpectationMatrix(a) assert expr.expand() == a expr = Expectation(X) assert expr == Expectation(X) == ExpectationMatrix(X) assert expr.shape == (k, 1) assert expr.rows == k assert expr.cols == 1 assert isinstance(expr, ExpectationMatrix) expr = Expectation(A*X + b) assert expr == ExpectationMatrix(A*X + b) assert expr.expand() == A*ExpectationMatrix(X) + b assert isinstance(expr, ExpectationMatrix) assert expr.shape == (k, 1) expr = Expectation(m1*X2) assert expr.expand() == expr expr = Expectation(A2*m1*B2*X2) assert expr.args[0].args == (A2, m1, B2, X2) assert expr.expand() == A2*ExpectationMatrix(m1*B2*X2) expr = Expectation((X + Y)*(X - Y).T) assert expr.expand() == ExpectationMatrix(X*X.T) - ExpectationMatrix(X*Y.T) +\ ExpectationMatrix(Y*X.T) - ExpectationMatrix(Y*Y.T) expr = Expectation(A*X + B*Y) assert expr.expand() == A*ExpectationMatrix(X) + B*ExpectationMatrix(Y) assert Expectation(m1).doit() == Matrix([[1, 2*j], [0, 0]]) x1 = Matrix([ [Normal('N11', 11, 1), Normal('N12', 12, 1)], [Normal('N21', 21, 1), Normal('N22', 22, 1)] ]) x2 = Matrix([ [Normal('M11', 1, 1), Normal('M12', 2, 1)], [Normal('M21', 3, 1), Normal('M22', 4, 1)] ]) assert Expectation(Expectation(x1 + x2)).doit(deep=False) == ExpectationMatrix(x1 + x2) assert Expectation(Expectation(x1 + x2)).doit() == Matrix([[12, 14], [24, 26]]) def test_multivariate_variance(): raises(ShapeError, lambda: Variance(A)) expr = Variance(a) # type: VarianceMatrix assert expr == Variance(a) == VarianceMatrix(a) assert expr.expand() == ZeroMatrix(k, k) expr = Variance(a.T) assert expr == Variance(a.T) == VarianceMatrix(a.T) assert expr.expand() == ZeroMatrix(k, k) expr = Variance(X) assert expr == Variance(X) == VarianceMatrix(X) assert expr.shape == (k, k) assert expr.rows == k assert expr.cols == k assert isinstance(expr, VarianceMatrix) expr = Variance(A*X) assert expr == VarianceMatrix(A*X) assert expr.expand() == A*VarianceMatrix(X)*A.T assert isinstance(expr, VarianceMatrix) assert expr.shape == (k, k) expr = Variance(A*B*X) assert expr.expand() == A*B*VarianceMatrix(X)*B.T*A.T expr = Variance(m1*X2) assert expr.expand() == expr expr = Variance(A2*m1*B2*X2) assert expr.args[0].args == (A2, m1, B2, X2) assert expr.expand() == expr expr = Variance(A*X + B*Y) assert expr.expand() == 2*A*CrossCovarianceMatrix(X, Y)*B.T +\ A*VarianceMatrix(X)*A.T + B*VarianceMatrix(Y)*B.T def test_multivariate_crosscovariance(): raises(ShapeError, lambda: Covariance(X, Y.T)) raises(ShapeError, lambda: Covariance(X, A)) expr = Covariance(a.T, b.T) assert expr.shape == (1, 1) assert expr.expand() == ZeroMatrix(1, 1) expr = Covariance(a, b) assert expr == Covariance(a, b) == CrossCovarianceMatrix(a, b) assert expr.expand() == ZeroMatrix(k, k) assert expr.shape == (k, k) assert expr.rows == k assert expr.cols == k assert isinstance(expr, CrossCovarianceMatrix) expr = Covariance(A*X + a, b) assert expr.expand() == ZeroMatrix(k, k) expr = Covariance(X, Y) assert isinstance(expr, CrossCovarianceMatrix) assert expr.expand() == expr expr = Covariance(X, X) assert isinstance(expr, CrossCovarianceMatrix) assert expr.expand() == VarianceMatrix(X) expr = Covariance(X + Y, Z) assert isinstance(expr, CrossCovarianceMatrix) assert expr.expand() == CrossCovarianceMatrix(X, Z) + CrossCovarianceMatrix(Y, Z) expr = Covariance(A*X, Y) assert isinstance(expr, CrossCovarianceMatrix) assert expr.expand() == A*CrossCovarianceMatrix(X, Y) expr = Covariance(X, B*Y) assert isinstance(expr, CrossCovarianceMatrix) assert expr.expand() == CrossCovarianceMatrix(X, Y)*B.T expr = Covariance(A*X + a, B.T*Y + b) assert isinstance(expr, CrossCovarianceMatrix) assert expr.expand() == A*CrossCovarianceMatrix(X, Y)*B expr = Covariance(A*X + B*Y + a, C.T*Z + D.T*W + b) assert isinstance(expr, CrossCovarianceMatrix) assert expr.expand() == A*CrossCovarianceMatrix(X, W)*D + A*CrossCovarianceMatrix(X, Z)*C \ + B*CrossCovarianceMatrix(Y, W)*D + B*CrossCovarianceMatrix(Y, Z)*C