import functools, itertools from sympy.core.sympify import _sympify, sympify from sympy.core.expr import Expr from sympy.core import Basic, Tuple from sympy.tensor.array import ImmutableDenseNDimArray from sympy.core.symbol import Symbol from sympy.core.numbers import Integer class ArrayComprehension(Basic): """ Generate a list comprehension. Explanation =========== If there is a symbolic dimension, for example, say [i for i in range(1, N)] where N is a Symbol, then the expression will not be expanded to an array. Otherwise, calling the doit() function will launch the expansion. Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j, k = symbols('i j k') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.doit() [[11, 12, 13], [21, 22, 23], [31, 32, 33], [41, 42, 43]] >>> b = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k)) >>> b.doit() ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k)) """ def __new__(cls, function, *symbols, **assumptions): if any(len(l) != 3 or None for l in symbols): raise ValueError('ArrayComprehension requires values lower and upper bound' ' for the expression') arglist = [sympify(function)] arglist.extend(cls._check_limits_validity(function, symbols)) obj = Basic.__new__(cls, *arglist, **assumptions) obj._limits = obj._args[1:] obj._shape = cls._calculate_shape_from_limits(obj._limits) obj._rank = len(obj._shape) obj._loop_size = cls._calculate_loop_size(obj._shape) return obj @property def function(self): """The function applied across limits. Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j = symbols('i j') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.function 10*i + j """ return self._args[0] @property def limits(self): """ The list of limits that will be applied while expanding the array. Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j = symbols('i j') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.limits ((i, 1, 4), (j, 1, 3)) """ return self._limits @property def free_symbols(self): """ The set of the free_symbols in the array. Variables appeared in the bounds are supposed to be excluded from the free symbol set. Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j, k = symbols('i j k') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.free_symbols set() >>> b = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k+3)) >>> b.free_symbols {k} """ expr_free_sym = self.function.free_symbols for var, inf, sup in self._limits: expr_free_sym.discard(var) curr_free_syms = inf.free_symbols.union(sup.free_symbols) expr_free_sym = expr_free_sym.union(curr_free_syms) return expr_free_sym @property def variables(self): """The tuples of the variables in the limits. Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j, k = symbols('i j k') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.variables [i, j] """ return [l[0] for l in self._limits] @property def bound_symbols(self): """The list of dummy variables. Note ==== Note that all variables are dummy variables since a limit without lower bound or upper bound is not accepted. """ return [l[0] for l in self._limits if len(l) != 1] @property def shape(self): """ The shape of the expanded array, which may have symbols. Note ==== Both the lower and the upper bounds are included while calculating the shape. Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j, k = symbols('i j k') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.shape (4, 3) >>> b = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k+3)) >>> b.shape (4, k + 3) """ return self._shape @property def is_shape_numeric(self): """ Test if the array is shape-numeric which means there is no symbolic dimension. Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j, k = symbols('i j k') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.is_shape_numeric True >>> b = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k+3)) >>> b.is_shape_numeric False """ for _, inf, sup in self._limits: if Basic(inf, sup).atoms(Symbol): return False return True def rank(self): """The rank of the expanded array. Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j, k = symbols('i j k') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.rank() 2 """ return self._rank def __len__(self): """ The length of the expanded array which means the number of elements in the array. Raises ====== ValueError : When the length of the array is symbolic Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j = symbols('i j') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> len(a) 12 """ if self._loop_size.free_symbols: raise ValueError('Symbolic length is not supported') return self._loop_size @classmethod def _check_limits_validity(cls, function, limits): #limits = sympify(limits) new_limits = [] for var, inf, sup in limits: var = _sympify(var) inf = _sympify(inf) #since this is stored as an argument, it should be #a Tuple if isinstance(sup, list): sup = Tuple(*sup) else: sup = _sympify(sup) new_limits.append(Tuple(var, inf, sup)) if any((not isinstance(i, Expr)) or i.atoms(Symbol, Integer) != i.atoms() for i in [inf, sup]): raise TypeError('Bounds should be an Expression(combination of Integer and Symbol)') if (inf > sup) == True: raise ValueError('Lower bound should be inferior to upper bound') if var in inf.free_symbols or var in sup.free_symbols: raise ValueError('Variable should not be part of its bounds') return new_limits @classmethod def _calculate_shape_from_limits(cls, limits): return tuple([sup - inf + 1 for _, inf, sup in limits]) @classmethod def _calculate_loop_size(cls, shape): if not shape: return 0 loop_size = 1 for l in shape: loop_size = loop_size * l return loop_size def doit(self): if not self.is_shape_numeric: return self return self._expand_array() def _expand_array(self): res = [] for values in itertools.product(*[range(inf, sup+1) for var, inf, sup in self._limits]): res.append(self._get_element(values)) return ImmutableDenseNDimArray(res, self.shape) def _get_element(self, values): temp = self.function for var, val in zip(self.variables, values): temp = temp.subs(var, val) return temp def tolist(self): """Transform the expanded array to a list. Raises ====== ValueError : When there is a symbolic dimension Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j = symbols('i j') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.tolist() [[11, 12, 13], [21, 22, 23], [31, 32, 33], [41, 42, 43]] """ if self.is_shape_numeric: return self._expand_array().tolist() raise ValueError("A symbolic array cannot be expanded to a list") def tomatrix(self): """Transform the expanded array to a matrix. Raises ====== ValueError : When there is a symbolic dimension ValueError : When the rank of the expanded array is not equal to 2 Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j = symbols('i j') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.tomatrix() Matrix([ [11, 12, 13], [21, 22, 23], [31, 32, 33], [41, 42, 43]]) """ from sympy.matrices import Matrix if not self.is_shape_numeric: raise ValueError("A symbolic array cannot be expanded to a matrix") if self._rank != 2: raise ValueError('Dimensions must be of size of 2') return Matrix(self._expand_array().tomatrix()) def isLambda(v): LAMBDA = lambda: 0 return isinstance(v, type(LAMBDA)) and v.__name__ == LAMBDA.__name__ class ArrayComprehensionMap(ArrayComprehension): ''' A subclass of ArrayComprehension dedicated to map external function lambda. Notes ===== Only the lambda function is considered. At most one argument in lambda function is accepted in order to avoid ambiguity in value assignment. Examples ======== >>> from sympy.tensor.array import ArrayComprehensionMap >>> from sympy import symbols >>> i, j, k = symbols('i j k') >>> a = ArrayComprehensionMap(lambda: 1, (i, 1, 4)) >>> a.doit() [1, 1, 1, 1] >>> b = ArrayComprehensionMap(lambda a: a+1, (j, 1, 4)) >>> b.doit() [2, 3, 4, 5] ''' def __new__(cls, function, *symbols, **assumptions): if any(len(l) != 3 or None for l in symbols): raise ValueError('ArrayComprehension requires values lower and upper bound' ' for the expression') if not isLambda(function): raise ValueError('Data type not supported') arglist = cls._check_limits_validity(function, symbols) obj = Basic.__new__(cls, *arglist, **assumptions) obj._limits = obj._args obj._shape = cls._calculate_shape_from_limits(obj._limits) obj._rank = len(obj._shape) obj._loop_size = cls._calculate_loop_size(obj._shape) obj._lambda = function return obj @property def func(self): class _(ArrayComprehensionMap): def __new__(cls, *args, **kwargs): return ArrayComprehensionMap(self._lambda, *args, **kwargs) return _ def _get_element(self, values): temp = self._lambda if self._lambda.__code__.co_argcount == 0: temp = temp() elif self._lambda.__code__.co_argcount == 1: temp = temp(functools.reduce(lambda a, b: a*b, values)) return temp