from sympy.core.basic import Basic from sympy.core.containers import (Dict, Tuple) from sympy.core.singleton import S from sympy.core.sympify import _sympify from sympy.tensor.array.mutable_ndim_array import MutableNDimArray from sympy.tensor.array.ndim_array import NDimArray, ImmutableNDimArray from sympy.utilities.iterables import flatten import functools class SparseNDimArray(NDimArray): def __new__(self, *args, **kwargs): return ImmutableSparseNDimArray(*args, **kwargs) def __getitem__(self, index): """ Get an element from a sparse N-dim array. Examples ======== >>> from sympy import MutableSparseNDimArray >>> a = MutableSparseNDimArray(range(4), (2, 2)) >>> a [[0, 1], [2, 3]] >>> a[0, 0] 0 >>> a[1, 1] 3 >>> a[0] [0, 1] >>> a[1] [2, 3] Symbolic indexing: >>> from sympy.abc import i, j >>> a[i, j] [[0, 1], [2, 3]][i, j] Replace `i` and `j` to get element `(0, 0)`: >>> a[i, j].subs({i: 0, j: 0}) 0 """ syindex = self._check_symbolic_index(index) if syindex is not None: return syindex index = self._check_index_for_getitem(index) # `index` is a tuple with one or more slices: if isinstance(index, tuple) and any(isinstance(i, slice) for i in index): sl_factors, eindices = self._get_slice_data_for_array_access(index) array = [self._sparse_array.get(self._parse_index(i), S.Zero) for i in eindices] nshape = [len(el) for i, el in enumerate(sl_factors) if isinstance(index[i], slice)] return type(self)(array, nshape) else: index = self._parse_index(index) return self._sparse_array.get(index, S.Zero) @classmethod def zeros(cls, *shape): """ Return a sparse N-dim array of zeros. """ return cls({}, shape) def tomatrix(self): """ Converts MutableDenseNDimArray to Matrix. Can convert only 2-dim array, else will raise error. Examples ======== >>> from sympy import MutableSparseNDimArray >>> a = MutableSparseNDimArray([1 for i in range(9)], (3, 3)) >>> b = a.tomatrix() >>> b Matrix([ [1, 1, 1], [1, 1, 1], [1, 1, 1]]) """ from sympy.matrices import SparseMatrix if self.rank() != 2: raise ValueError('Dimensions must be of size of 2') mat_sparse = {} for key, value in self._sparse_array.items(): mat_sparse[self._get_tuple_index(key)] = value return SparseMatrix(self.shape[0], self.shape[1], mat_sparse) def reshape(self, *newshape): new_total_size = functools.reduce(lambda x,y: x*y, newshape) if new_total_size != self._loop_size: raise ValueError("Invalid reshape parameters " + newshape) return type(self)(self._sparse_array, newshape) class ImmutableSparseNDimArray(SparseNDimArray, ImmutableNDimArray): # type: ignore def __new__(cls, iterable=None, shape=None, **kwargs): shape, flat_list = cls._handle_ndarray_creation_inputs(iterable, shape, **kwargs) shape = Tuple(*map(_sympify, shape)) cls._check_special_bounds(flat_list, shape) loop_size = functools.reduce(lambda x,y: x*y, shape) if shape else len(flat_list) # Sparse array: if isinstance(flat_list, (dict, Dict)): sparse_array = Dict(flat_list) else: sparse_array = {} for i, el in enumerate(flatten(flat_list)): if el != 0: sparse_array[i] = _sympify(el) sparse_array = Dict(sparse_array) self = Basic.__new__(cls, sparse_array, shape, **kwargs) self._shape = shape self._rank = len(shape) self._loop_size = loop_size self._sparse_array = sparse_array return self def __setitem__(self, index, value): raise TypeError("immutable N-dim array") def as_mutable(self): return MutableSparseNDimArray(self) class MutableSparseNDimArray(MutableNDimArray, SparseNDimArray): def __new__(cls, iterable=None, shape=None, **kwargs): shape, flat_list = cls._handle_ndarray_creation_inputs(iterable, shape, **kwargs) self = object.__new__(cls) self._shape = shape self._rank = len(shape) self._loop_size = functools.reduce(lambda x,y: x*y, shape) if shape else len(flat_list) # Sparse array: if isinstance(flat_list, (dict, Dict)): self._sparse_array = dict(flat_list) return self self._sparse_array = {} for i, el in enumerate(flatten(flat_list)): if el != 0: self._sparse_array[i] = _sympify(el) return self def __setitem__(self, index, value): """Allows to set items to MutableDenseNDimArray. Examples ======== >>> from sympy import MutableSparseNDimArray >>> a = MutableSparseNDimArray.zeros(2, 2) >>> a[0, 0] = 1 >>> a[1, 1] = 1 >>> a [[1, 0], [0, 1]] """ if isinstance(index, tuple) and any(isinstance(i, slice) for i in index): value, eindices, slice_offsets = self._get_slice_data_for_array_assignment(index, value) for i in eindices: other_i = [ind - j for ind, j in zip(i, slice_offsets) if j is not None] other_value = value[other_i] complete_index = self._parse_index(i) if other_value != 0: self._sparse_array[complete_index] = other_value elif complete_index in self._sparse_array: self._sparse_array.pop(complete_index) else: index = self._parse_index(index) value = _sympify(value) if value == 0 and index in self._sparse_array: self._sparse_array.pop(index) else: self._sparse_array[index] = value def as_immutable(self): return ImmutableSparseNDimArray(self) @property def free_symbols(self): return {i for j in self._sparse_array.values() for i in j.free_symbols}