""" This module defines tensors with abstract index notation. The abstract index notation has been first formalized by Penrose. Tensor indices are formal objects, with a tensor type; there is no notion of index range, it is only possible to assign the dimension, used to trace the Kronecker delta; the dimension can be a Symbol. The Einstein summation convention is used. The covariant indices are indicated with a minus sign in front of the index. For instance the tensor ``t = p(a)*A(b,c)*q(-c)`` has the index ``c`` contracted. A tensor expression ``t`` can be called; called with its indices in sorted order it is equal to itself: in the above example ``t(a, b) == t``; one can call ``t`` with different indices; ``t(c, d) == p(c)*A(d,a)*q(-a)``. The contracted indices are dummy indices, internally they have no name, the indices being represented by a graph-like structure. Tensors are put in canonical form using ``canon_bp``, which uses the Butler-Portugal algorithm for canonicalization using the monoterm symmetries of the tensors. If there is a (anti)symmetric metric, the indices can be raised and lowered when the tensor is put in canonical form. """ from typing import Any, Dict as tDict, List, Set as tSet, Tuple as tTuple from functools import reduce from abc import abstractmethod, ABCMeta from collections import defaultdict import operator import itertools from sympy.core.mul import prod from sympy.core.numbers import (Integer, Rational) from sympy.combinatorics import Permutation from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, \ bsgs_direct_product, canonicalize, riemann_bsgs from sympy.core import Basic, Expr, sympify, Add, Mul, S from sympy.core.assumptions import ManagedProperties from sympy.core.containers import Tuple, Dict from sympy.core.sorting import default_sort_key from sympy.core.symbol import Symbol, symbols from sympy.core.sympify import CantSympify, _sympify from sympy.core.operations import AssocOp from sympy.external.gmpy import SYMPY_INTS from sympy.matrices import eye from sympy.utilities.exceptions import (sympy_deprecation_warning, SymPyDeprecationWarning, ignore_warnings) from sympy.utilities.decorator import memoize_property, deprecated def deprecate_data(): sympy_deprecation_warning( """ The data attribute of TensorIndexType is deprecated. Use The replace_with_arrays() method instead. """, deprecated_since_version="1.4", active_deprecations_target="deprecated-tensorindextype-attrs", stacklevel=4, ) def deprecate_fun_eval(): sympy_deprecation_warning( """ The Tensor.fun_eval() method is deprecated. Use Tensor.substitute_indices() instead. """, deprecated_since_version="1.5", active_deprecations_target="deprecated-tensor-fun-eval", stacklevel=4, ) def deprecate_call(): sympy_deprecation_warning( """ Calling a tensor like Tensor(*indices) is deprecated. Use Tensor.substitute_indices() instead. """, deprecated_since_version="1.5", active_deprecations_target="deprecated-tensor-fun-eval", stacklevel=4, ) class _IndexStructure(CantSympify): """ This class handles the indices (free and dummy ones). It contains the algorithms to manage the dummy indices replacements and contractions of free indices under multiplications of tensor expressions, as well as stuff related to canonicalization sorting, getting the permutation of the expression and so on. It also includes tools to get the ``TensorIndex`` objects corresponding to the given index structure. """ def __init__(self, free, dum, index_types, indices, canon_bp=False): self.free = free self.dum = dum self.index_types = index_types self.indices = indices self._ext_rank = len(self.free) + 2*len(self.dum) self.dum.sort(key=lambda x: x[0]) @staticmethod def from_indices(*indices): """ Create a new ``_IndexStructure`` object from a list of ``indices``. Explanation =========== ``indices`` ``TensorIndex`` objects, the indices. Contractions are detected upon construction. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, _IndexStructure >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz) >>> _IndexStructure.from_indices(m0, m1, -m1, m3) _IndexStructure([(m0, 0), (m3, 3)], [(1, 2)], [Lorentz, Lorentz, Lorentz, Lorentz]) """ free, dum = _IndexStructure._free_dum_from_indices(*indices) index_types = [i.tensor_index_type for i in indices] indices = _IndexStructure._replace_dummy_names(indices, free, dum) return _IndexStructure(free, dum, index_types, indices) @staticmethod def from_components_free_dum(components, free, dum): index_types = [] for component in components: index_types.extend(component.index_types) indices = _IndexStructure.generate_indices_from_free_dum_index_types(free, dum, index_types) return _IndexStructure(free, dum, index_types, indices) @staticmethod def _free_dum_from_indices(*indices): """ Convert ``indices`` into ``free``, ``dum`` for single component tensor. Explanation =========== ``free`` list of tuples ``(index, pos, 0)``, where ``pos`` is the position of index in the list of indices formed by the component tensors ``dum`` list of tuples ``(pos_contr, pos_cov, 0, 0)`` Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, \ _IndexStructure >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz) >>> _IndexStructure._free_dum_from_indices(m0, m1, -m1, m3) ([(m0, 0), (m3, 3)], [(1, 2)]) """ n = len(indices) if n == 1: return [(indices[0], 0)], [] # find the positions of the free indices and of the dummy indices free = [True]*len(indices) index_dict = {} dum = [] for i, index in enumerate(indices): name = index.name typ = index.tensor_index_type contr = index.is_up if (name, typ) in index_dict: # found a pair of dummy indices is_contr, pos = index_dict[(name, typ)] # check consistency and update free if is_contr: if contr: raise ValueError('two equal contravariant indices in slots %d and %d' %(pos, i)) else: free[pos] = False free[i] = False else: if contr: free[pos] = False free[i] = False else: raise ValueError('two equal covariant indices in slots %d and %d' %(pos, i)) if contr: dum.append((i, pos)) else: dum.append((pos, i)) else: index_dict[(name, typ)] = index.is_up, i free = [(index, i) for i, index in enumerate(indices) if free[i]] free.sort() return free, dum def get_indices(self): """ Get a list of indices, creating new tensor indices to complete dummy indices. """ return self.indices[:] @staticmethod def generate_indices_from_free_dum_index_types(free, dum, index_types): indices = [None]*(len(free)+2*len(dum)) for idx, pos in free: indices[pos] = idx generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free) for pos1, pos2 in dum: typ1 = index_types[pos1] indname = generate_dummy_name(typ1) indices[pos1] = TensorIndex(indname, typ1, True) indices[pos2] = TensorIndex(indname, typ1, False) return _IndexStructure._replace_dummy_names(indices, free, dum) @staticmethod def _get_generator_for_dummy_indices(free): cdt = defaultdict(int) # if the free indices have names with dummy_name, start with an # index higher than those for the dummy indices # to avoid name collisions for indx, ipos in free: if indx.name.split('_')[0] == indx.tensor_index_type.dummy_name: cdt[indx.tensor_index_type] = max(cdt[indx.tensor_index_type], int(indx.name.split('_')[1]) + 1) def dummy_name_gen(tensor_index_type): nd = str(cdt[tensor_index_type]) cdt[tensor_index_type] += 1 return tensor_index_type.dummy_name + '_' + nd return dummy_name_gen @staticmethod def _replace_dummy_names(indices, free, dum): dum.sort(key=lambda x: x[0]) new_indices = [ind for ind in indices] assert len(indices) == len(free) + 2*len(dum) generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free) for ipos1, ipos2 in dum: typ1 = new_indices[ipos1].tensor_index_type indname = generate_dummy_name(typ1) new_indices[ipos1] = TensorIndex(indname, typ1, True) new_indices[ipos2] = TensorIndex(indname, typ1, False) return new_indices def get_free_indices(self): # type: () -> List[TensorIndex] """ Get a list of free indices. """ # get sorted indices according to their position: free = sorted(self.free, key=lambda x: x[1]) return [i[0] for i in free] def __str__(self): return "_IndexStructure({}, {}, {})".format(self.free, self.dum, self.index_types) def __repr__(self): return self.__str__() def _get_sorted_free_indices_for_canon(self): sorted_free = self.free[:] sorted_free.sort(key=lambda x: x[0]) return sorted_free def _get_sorted_dum_indices_for_canon(self): return sorted(self.dum, key=lambda x: x[0]) def _get_lexicographically_sorted_index_types(self): permutation = self.indices_canon_args()[0] index_types = [None]*self._ext_rank for i, it in enumerate(self.index_types): index_types[permutation(i)] = it return index_types def _get_lexicographically_sorted_indices(self): permutation = self.indices_canon_args()[0] indices = [None]*self._ext_rank for i, it in enumerate(self.indices): indices[permutation(i)] = it return indices def perm2tensor(self, g, is_canon_bp=False): """ Returns a ``_IndexStructure`` instance corresponding to the permutation ``g``. Explanation =========== ``g`` permutation corresponding to the tensor in the representation used in canonicalization ``is_canon_bp`` if True, then ``g`` is the permutation corresponding to the canonical form of the tensor """ sorted_free = [i[0] for i in self._get_sorted_free_indices_for_canon()] lex_index_types = self._get_lexicographically_sorted_index_types() lex_indices = self._get_lexicographically_sorted_indices() nfree = len(sorted_free) rank = self._ext_rank dum = [[None]*2 for i in range((rank - nfree)//2)] free = [] index_types = [None]*rank indices = [None]*rank for i in range(rank): gi = g[i] index_types[i] = lex_index_types[gi] indices[i] = lex_indices[gi] if gi < nfree: ind = sorted_free[gi] assert index_types[i] == sorted_free[gi].tensor_index_type free.append((ind, i)) else: j = gi - nfree idum, cov = divmod(j, 2) if cov: dum[idum][1] = i else: dum[idum][0] = i dum = [tuple(x) for x in dum] return _IndexStructure(free, dum, index_types, indices) def indices_canon_args(self): """ Returns ``(g, dummies, msym, v)``, the entries of ``canonicalize`` See ``canonicalize`` in ``tensor_can.py`` in combinatorics module. """ # to be called after sorted_components from sympy.combinatorics.permutations import _af_new n = self._ext_rank g = [None]*n + [n, n+1] # Converts the symmetry of the metric into msym from .canonicalize() # method in the combinatorics module def metric_symmetry_to_msym(metric): if metric is None: return None sym = metric.symmetry if sym == TensorSymmetry.fully_symmetric(2): return 0 if sym == TensorSymmetry.fully_symmetric(-2): return 1 return None # ordered indices: first the free indices, ordered by types # then the dummy indices, ordered by types and contravariant before # covariant # g[position in tensor] = position in ordered indices for i, (indx, ipos) in enumerate(self._get_sorted_free_indices_for_canon()): g[ipos] = i pos = len(self.free) j = len(self.free) dummies = [] prev = None a = [] msym = [] for ipos1, ipos2 in self._get_sorted_dum_indices_for_canon(): g[ipos1] = j g[ipos2] = j + 1 j += 2 typ = self.index_types[ipos1] if typ != prev: if a: dummies.append(a) a = [pos, pos + 1] prev = typ msym.append(metric_symmetry_to_msym(typ.metric)) else: a.extend([pos, pos + 1]) pos += 2 if a: dummies.append(a) return _af_new(g), dummies, msym def components_canon_args(components): numtyp = [] prev = None for t in components: if t == prev: numtyp[-1][1] += 1 else: prev = t numtyp.append([prev, 1]) v = [] for h, n in numtyp: if h.comm in (0, 1): comm = h.comm else: comm = TensorManager.get_comm(h.comm, h.comm) v.append((h.symmetry.base, h.symmetry.generators, n, comm)) return v class _TensorDataLazyEvaluator(CantSympify): """ EXPERIMENTAL: do not rely on this class, it may change without deprecation warnings in future versions of SymPy. Explanation =========== This object contains the logic to associate components data to a tensor expression. Components data are set via the ``.data`` property of tensor expressions, is stored inside this class as a mapping between the tensor expression and the ``ndarray``. Computations are executed lazily: whereas the tensor expressions can have contractions, tensor products, and additions, components data are not computed until they are accessed by reading the ``.data`` property associated to the tensor expression. """ _substitutions_dict = dict() # type: tDict[Any, Any] _substitutions_dict_tensmul = dict() # type: tDict[Any, Any] def __getitem__(self, key): dat = self._get(key) if dat is None: return None from .array import NDimArray if not isinstance(dat, NDimArray): return dat if dat.rank() == 0: return dat[()] elif dat.rank() == 1 and len(dat) == 1: return dat[0] return dat def _get(self, key): """ Retrieve ``data`` associated with ``key``. Explanation =========== This algorithm looks into ``self._substitutions_dict`` for all ``TensorHead`` in the ``TensExpr`` (or just ``TensorHead`` if key is a TensorHead instance). It reconstructs the components data that the tensor expression should have by performing on components data the operations that correspond to the abstract tensor operations applied. Metric tensor is handled in a different manner: it is pre-computed in ``self._substitutions_dict_tensmul``. """ if key in self._substitutions_dict: return self._substitutions_dict[key] if isinstance(key, TensorHead): return None if isinstance(key, Tensor): # special case to handle metrics. Metric tensors cannot be # constructed through contraction by the metric, their # components show if they are a matrix or its inverse. signature = tuple([i.is_up for i in key.get_indices()]) srch = (key.component,) + signature if srch in self._substitutions_dict_tensmul: return self._substitutions_dict_tensmul[srch] array_list = [self.data_from_tensor(key)] return self.data_contract_dum(array_list, key.dum, key.ext_rank) if isinstance(key, TensMul): tensmul_args = key.args if len(tensmul_args) == 1 and len(tensmul_args[0].components) == 1: # special case to handle metrics. Metric tensors cannot be # constructed through contraction by the metric, their # components show if they are a matrix or its inverse. signature = tuple([i.is_up for i in tensmul_args[0].get_indices()]) srch = (tensmul_args[0].components[0],) + signature if srch in self._substitutions_dict_tensmul: return self._substitutions_dict_tensmul[srch] #data_list = [self.data_from_tensor(i) for i in tensmul_args if isinstance(i, TensExpr)] data_list = [self.data_from_tensor(i) if isinstance(i, Tensor) else i.data for i in tensmul_args if isinstance(i, TensExpr)] coeff = prod([i for i in tensmul_args if not isinstance(i, TensExpr)]) if all(i is None for i in data_list): return None if any(i is None for i in data_list): raise ValueError("Mixing tensors with associated components "\ "data with tensors without components data") data_result = self.data_contract_dum(data_list, key.dum, key.ext_rank) return coeff*data_result if isinstance(key, TensAdd): data_list = [] free_args_list = [] for arg in key.args: if isinstance(arg, TensExpr): data_list.append(arg.data) free_args_list.append([x[0] for x in arg.free]) else: data_list.append(arg) free_args_list.append([]) if all(i is None for i in data_list): return None if any(i is None for i in data_list): raise ValueError("Mixing tensors with associated components "\ "data with tensors without components data") sum_list = [] from .array import permutedims for data, free_args in zip(data_list, free_args_list): if len(free_args) < 2: sum_list.append(data) else: free_args_pos = {y: x for x, y in enumerate(free_args)} axes = [free_args_pos[arg] for arg in key.free_args] sum_list.append(permutedims(data, axes)) return reduce(lambda x, y: x+y, sum_list) return None @staticmethod def data_contract_dum(ndarray_list, dum, ext_rank): from .array import tensorproduct, tensorcontraction, MutableDenseNDimArray arrays = list(map(MutableDenseNDimArray, ndarray_list)) prodarr = tensorproduct(*arrays) return tensorcontraction(prodarr, *dum) def data_tensorhead_from_tensmul(self, data, tensmul, tensorhead): """ This method is used when assigning components data to a ``TensMul`` object, it converts components data to a fully contravariant ndarray, which is then stored according to the ``TensorHead`` key. """ if data is None: return None return self._correct_signature_from_indices( data, tensmul.get_indices(), tensmul.free, tensmul.dum, True) def data_from_tensor(self, tensor): """ This method corrects the components data to the right signature (covariant/contravariant) using the metric associated with each ``TensorIndexType``. """ tensorhead = tensor.component if tensorhead.data is None: return None return self._correct_signature_from_indices( tensorhead.data, tensor.get_indices(), tensor.free, tensor.dum) def _assign_data_to_tensor_expr(self, key, data): if isinstance(key, TensAdd): raise ValueError('cannot assign data to TensAdd') # here it is assumed that `key` is a `TensMul` instance. if len(key.components) != 1: raise ValueError('cannot assign data to TensMul with multiple components') tensorhead = key.components[0] newdata = self.data_tensorhead_from_tensmul(data, key, tensorhead) return tensorhead, newdata def _check_permutations_on_data(self, tens, data): from .array import permutedims from .array.arrayop import Flatten if isinstance(tens, TensorHead): rank = tens.rank generators = tens.symmetry.generators elif isinstance(tens, Tensor): rank = tens.rank generators = tens.components[0].symmetry.generators elif isinstance(tens, TensorIndexType): rank = tens.metric.rank generators = tens.metric.symmetry.generators # Every generator is a permutation, check that by permuting the array # by that permutation, the array will be the same, except for a # possible sign change if the permutation admits it. for gener in generators: sign_change = +1 if (gener(rank) == rank) else -1 data_swapped = data last_data = data permute_axes = list(map(gener, list(range(rank)))) # the order of a permutation is the number of times to get the # identity by applying that permutation. for i in range(gener.order()-1): data_swapped = permutedims(data_swapped, permute_axes) # if any value in the difference array is non-zero, raise an error: if any(Flatten(last_data - sign_change*data_swapped)): raise ValueError("Component data symmetry structure error") last_data = data_swapped def __setitem__(self, key, value): """ Set the components data of a tensor object/expression. Explanation =========== Components data are transformed to the all-contravariant form and stored with the corresponding ``TensorHead`` object. If a ``TensorHead`` object cannot be uniquely identified, it will raise an error. """ data = _TensorDataLazyEvaluator.parse_data(value) self._check_permutations_on_data(key, data) # TensorHead and TensorIndexType can be assigned data directly, while # TensMul must first convert data to a fully contravariant form, and # assign it to its corresponding TensorHead single component. if not isinstance(key, (TensorHead, TensorIndexType)): key, data = self._assign_data_to_tensor_expr(key, data) if isinstance(key, TensorHead): for dim, indextype in zip(data.shape, key.index_types): if indextype.data is None: raise ValueError("index type {} has no components data"\ " associated (needed to raise/lower index)".format(indextype)) if not indextype.dim.is_number: continue if dim != indextype.dim: raise ValueError("wrong dimension of ndarray") self._substitutions_dict[key] = data def __delitem__(self, key): del self._substitutions_dict[key] def __contains__(self, key): return key in self._substitutions_dict def add_metric_data(self, metric, data): """ Assign data to the ``metric`` tensor. The metric tensor behaves in an anomalous way when raising and lowering indices. Explanation =========== A fully covariant metric is the inverse transpose of the fully contravariant metric (it is meant matrix inverse). If the metric is symmetric, the transpose is not necessary and mixed covariant/contravariant metrics are Kronecker deltas. """ # hard assignment, data should not be added to `TensorHead` for metric: # the problem with `TensorHead` is that the metric is anomalous, i.e. # raising and lowering the index means considering the metric or its # inverse, this is not the case for other tensors. self._substitutions_dict_tensmul[metric, True, True] = data inverse_transpose = self.inverse_transpose_matrix(data) # in symmetric spaces, the transpose is the same as the original matrix, # the full covariant metric tensor is the inverse transpose, so this # code will be able to handle non-symmetric metrics. self._substitutions_dict_tensmul[metric, False, False] = inverse_transpose # now mixed cases, these are identical to the unit matrix if the metric # is symmetric. m = data.tomatrix() invt = inverse_transpose.tomatrix() self._substitutions_dict_tensmul[metric, True, False] = m * invt self._substitutions_dict_tensmul[metric, False, True] = invt * m @staticmethod def _flip_index_by_metric(data, metric, pos): from .array import tensorproduct, tensorcontraction mdim = metric.rank() ddim = data.rank() if pos == 0: data = tensorcontraction( tensorproduct( metric, data ), (1, mdim+pos) ) else: data = tensorcontraction( tensorproduct( data, metric ), (pos, ddim) ) return data @staticmethod def inverse_matrix(ndarray): m = ndarray.tomatrix().inv() return _TensorDataLazyEvaluator.parse_data(m) @staticmethod def inverse_transpose_matrix(ndarray): m = ndarray.tomatrix().inv().T return _TensorDataLazyEvaluator.parse_data(m) @staticmethod def _correct_signature_from_indices(data, indices, free, dum, inverse=False): """ Utility function to correct the values inside the components data ndarray according to whether indices are covariant or contravariant. It uses the metric matrix to lower values of covariant indices. """ # change the ndarray values according covariantness/contravariantness of the indices # use the metric for i, indx in enumerate(indices): if not indx.is_up and not inverse: data = _TensorDataLazyEvaluator._flip_index_by_metric(data, indx.tensor_index_type.data, i) elif not indx.is_up and inverse: data = _TensorDataLazyEvaluator._flip_index_by_metric( data, _TensorDataLazyEvaluator.inverse_matrix(indx.tensor_index_type.data), i ) return data @staticmethod def _sort_data_axes(old, new): from .array import permutedims new_data = old.data.copy() old_free = [i[0] for i in old.free] new_free = [i[0] for i in new.free] for i in range(len(new_free)): for j in range(i, len(old_free)): if old_free[j] == new_free[i]: old_free[i], old_free[j] = old_free[j], old_free[i] new_data = permutedims(new_data, (i, j)) break return new_data @staticmethod def add_rearrange_tensmul_parts(new_tensmul, old_tensmul): def sorted_compo(): return _TensorDataLazyEvaluator._sort_data_axes(old_tensmul, new_tensmul) _TensorDataLazyEvaluator._substitutions_dict[new_tensmul] = sorted_compo() @staticmethod def parse_data(data): """ Transform ``data`` to array. The parameter ``data`` may contain data in various formats, e.g. nested lists, SymPy ``Matrix``, and so on. Examples ======== >>> from sympy.tensor.tensor import _TensorDataLazyEvaluator >>> _TensorDataLazyEvaluator.parse_data([1, 3, -6, 12]) [1, 3, -6, 12] >>> _TensorDataLazyEvaluator.parse_data([[1, 2], [4, 7]]) [[1, 2], [4, 7]] """ from .array import MutableDenseNDimArray if not isinstance(data, MutableDenseNDimArray): if len(data) == 2 and hasattr(data[0], '__call__'): data = MutableDenseNDimArray(data[0], data[1]) else: data = MutableDenseNDimArray(data) return data _tensor_data_substitution_dict = _TensorDataLazyEvaluator() class _TensorManager: """ Class to manage tensor properties. Notes ===== Tensors belong to tensor commutation groups; each group has a label ``comm``; there are predefined labels: ``0`` tensors commuting with any other tensor ``1`` tensors anticommuting among themselves ``2`` tensors not commuting, apart with those with ``comm=0`` Other groups can be defined using ``set_comm``; tensors in those groups commute with those with ``comm=0``; by default they do not commute with any other group. """ def __init__(self): self._comm_init() def _comm_init(self): self._comm = [{} for i in range(3)] for i in range(3): self._comm[0][i] = 0 self._comm[i][0] = 0 self._comm[1][1] = 1 self._comm[2][1] = None self._comm[1][2] = None self._comm_symbols2i = {0:0, 1:1, 2:2} self._comm_i2symbol = {0:0, 1:1, 2:2} @property def comm(self): return self._comm def comm_symbols2i(self, i): """ Get the commutation group number corresponding to ``i``. ``i`` can be a symbol or a number or a string. If ``i`` is not already defined its commutation group number is set. """ if i not in self._comm_symbols2i: n = len(self._comm) self._comm.append({}) self._comm[n][0] = 0 self._comm[0][n] = 0 self._comm_symbols2i[i] = n self._comm_i2symbol[n] = i return n return self._comm_symbols2i[i] def comm_i2symbol(self, i): """ Returns the symbol corresponding to the commutation group number. """ return self._comm_i2symbol[i] def set_comm(self, i, j, c): """ Set the commutation parameter ``c`` for commutation groups ``i, j``. Parameters ========== i, j : symbols representing commutation groups c : group commutation number Notes ===== ``i, j`` can be symbols, strings or numbers, apart from ``0, 1`` and ``2`` which are reserved respectively for commuting, anticommuting tensors and tensors not commuting with any other group apart with the commuting tensors. For the remaining cases, use this method to set the commutation rules; by default ``c=None``. The group commutation number ``c`` is assigned in correspondence to the group commutation symbols; it can be 0 commuting 1 anticommuting None no commutation property Examples ======== ``G`` and ``GH`` do not commute with themselves and commute with each other; A is commuting. >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, TensorManager, TensorSymmetry >>> Lorentz = TensorIndexType('Lorentz') >>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz) >>> A = TensorHead('A', [Lorentz]) >>> G = TensorHead('G', [Lorentz], TensorSymmetry.no_symmetry(1), 'Gcomm') >>> GH = TensorHead('GH', [Lorentz], TensorSymmetry.no_symmetry(1), 'GHcomm') >>> TensorManager.set_comm('Gcomm', 'GHcomm', 0) >>> (GH(i1)*G(i0)).canon_bp() G(i0)*GH(i1) >>> (G(i1)*G(i0)).canon_bp() G(i1)*G(i0) >>> (G(i1)*A(i0)).canon_bp() A(i0)*G(i1) """ if c not in (0, 1, None): raise ValueError('`c` can assume only the values 0, 1 or None') if i not in self._comm_symbols2i: n = len(self._comm) self._comm.append({}) self._comm[n][0] = 0 self._comm[0][n] = 0 self._comm_symbols2i[i] = n self._comm_i2symbol[n] = i if j not in self._comm_symbols2i: n = len(self._comm) self._comm.append({}) self._comm[0][n] = 0 self._comm[n][0] = 0 self._comm_symbols2i[j] = n self._comm_i2symbol[n] = j ni = self._comm_symbols2i[i] nj = self._comm_symbols2i[j] self._comm[ni][nj] = c self._comm[nj][ni] = c def set_comms(self, *args): """ Set the commutation group numbers ``c`` for symbols ``i, j``. Parameters ========== args : sequence of ``(i, j, c)`` """ for i, j, c in args: self.set_comm(i, j, c) def get_comm(self, i, j): """ Return the commutation parameter for commutation group numbers ``i, j`` see ``_TensorManager.set_comm`` """ return self._comm[i].get(j, 0 if i == 0 or j == 0 else None) def clear(self): """ Clear the TensorManager. """ self._comm_init() TensorManager = _TensorManager() class TensorIndexType(Basic): """ A TensorIndexType is characterized by its name and its metric. Parameters ========== name : name of the tensor type dummy_name : name of the head of dummy indices dim : dimension, it can be a symbol or an integer or ``None`` eps_dim : dimension of the epsilon tensor metric_symmetry : integer that denotes metric symmetry or ``None`` for no metirc metric_name : string with the name of the metric tensor Attributes ========== ``metric`` : the metric tensor ``delta`` : ``Kronecker delta`` ``epsilon`` : the ``Levi-Civita epsilon`` tensor ``data`` : (deprecated) a property to add ``ndarray`` values, to work in a specified basis. Notes ===== The possible values of the ``metric_symmetry`` parameter are: ``1`` : metric tensor is fully symmetric ``0`` : metric tensor possesses no index symmetry ``-1`` : metric tensor is fully antisymmetric ``None``: there is no metric tensor (metric equals to ``None``) The metric is assumed to be symmetric by default. It can also be set to a custom tensor by the ``.set_metric()`` method. If there is a metric the metric is used to raise and lower indices. In the case of non-symmetric metric, the following raising and lowering conventions will be adopted: ``psi(a) = g(a, b)*psi(-b); chi(-a) = chi(b)*g(-b, -a)`` From these it is easy to find: ``g(-a, b) = delta(-a, b)`` where ``delta(-a, b) = delta(b, -a)`` is the ``Kronecker delta`` (see ``TensorIndex`` for the conventions on indices). For antisymmetric metrics there is also the following equality: ``g(a, -b) = -delta(a, -b)`` If there is no metric it is not possible to raise or lower indices; e.g. the index of the defining representation of ``SU(N)`` is 'covariant' and the conjugate representation is 'contravariant'; for ``N > 2`` they are linearly independent. ``eps_dim`` is by default equal to ``dim``, if the latter is an integer; else it can be assigned (for use in naive dimensional regularization); if ``eps_dim`` is not an integer ``epsilon`` is ``None``. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> Lorentz.metric metric(Lorentz,Lorentz) """ def __new__(cls, name, dummy_name=None, dim=None, eps_dim=None, metric_symmetry=1, metric_name='metric', **kwargs): if 'dummy_fmt' in kwargs: dummy_fmt = kwargs['dummy_fmt'] sympy_deprecation_warning( f""" The dummy_fmt keyword to TensorIndexType is deprecated. Use dummy_name={dummy_fmt} instead. """, deprecated_since_version="1.5", active_deprecations_target="deprecated-tensorindextype-dummy-fmt", ) dummy_name = dummy_fmt if isinstance(name, str): name = Symbol(name) if dummy_name is None: dummy_name = str(name)[0] if isinstance(dummy_name, str): dummy_name = Symbol(dummy_name) if dim is None: dim = Symbol("dim_" + dummy_name.name) else: dim = sympify(dim) if eps_dim is None: eps_dim = dim else: eps_dim = sympify(eps_dim) metric_symmetry = sympify(metric_symmetry) if isinstance(metric_name, str): metric_name = Symbol(metric_name) if 'metric' in kwargs: SymPyDeprecationWarning( """ The 'metric' keyword argument to TensorIndexType is deprecated. Use the 'metric_symmetry' keyword argument or the TensorIndexType.set_metric() method instead. """, deprecated_since_version="1.5", active_deprecations_target="deprecated-tensorindextype-metric", ) metric = kwargs.get('metric') if metric is not None: if metric in (True, False, 0, 1): metric_name = 'metric' #metric_antisym = metric else: metric_name = metric.name #metric_antisym = metric.antisym if metric: metric_symmetry = -1 else: metric_symmetry = 1 obj = Basic.__new__(cls, name, dummy_name, dim, eps_dim, metric_symmetry, metric_name) obj._autogenerated = [] return obj @property def name(self): return self.args[0].name @property def dummy_name(self): return self.args[1].name @property def dim(self): return self.args[2] @property def eps_dim(self): return self.args[3] @memoize_property def metric(self): metric_symmetry = self.args[4] metric_name = self.args[5] if metric_symmetry is None: return None if metric_symmetry == 0: symmetry = TensorSymmetry.no_symmetry(2) elif metric_symmetry == 1: symmetry = TensorSymmetry.fully_symmetric(2) elif metric_symmetry == -1: symmetry = TensorSymmetry.fully_symmetric(-2) return TensorHead(metric_name, [self]*2, symmetry) @memoize_property def delta(self): return TensorHead('KD', [self]*2, TensorSymmetry.fully_symmetric(2)) @memoize_property def epsilon(self): if not isinstance(self.eps_dim, (SYMPY_INTS, Integer)): return None symmetry = TensorSymmetry.fully_symmetric(-self.eps_dim) return TensorHead('Eps', [self]*self.eps_dim, symmetry) def set_metric(self, tensor): self._metric = tensor def __lt__(self, other): return self.name < other.name def __str__(self): return self.name __repr__ = __str__ # Everything below this line is deprecated @property def data(self): deprecate_data() with ignore_warnings(SymPyDeprecationWarning): return _tensor_data_substitution_dict[self] @data.setter def data(self, data): deprecate_data() # This assignment is a bit controversial, should metric components be assigned # to the metric only or also to the TensorIndexType object? The advantage here # is the ability to assign a 1D array and transform it to a 2D diagonal array. from .array import MutableDenseNDimArray data = _TensorDataLazyEvaluator.parse_data(data) if data.rank() > 2: raise ValueError("data have to be of rank 1 (diagonal metric) or 2.") if data.rank() == 1: if self.dim.is_number: nda_dim = data.shape[0] if nda_dim != self.dim: raise ValueError("Dimension mismatch") dim = data.shape[0] newndarray = MutableDenseNDimArray.zeros(dim, dim) for i, val in enumerate(data): newndarray[i, i] = val data = newndarray dim1, dim2 = data.shape if dim1 != dim2: raise ValueError("Non-square matrix tensor.") if self.dim.is_number: if self.dim != dim1: raise ValueError("Dimension mismatch") _tensor_data_substitution_dict[self] = data _tensor_data_substitution_dict.add_metric_data(self.metric, data) with ignore_warnings(SymPyDeprecationWarning): delta = self.get_kronecker_delta() i1 = TensorIndex('i1', self) i2 = TensorIndex('i2', self) with ignore_warnings(SymPyDeprecationWarning): delta(i1, -i2).data = _TensorDataLazyEvaluator.parse_data(eye(dim1)) @data.deleter def data(self): deprecate_data() with ignore_warnings(SymPyDeprecationWarning): if self in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self] if self.metric in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self.metric] @deprecated( """ The TensorIndexType.get_kronecker_delta() method is deprecated. Use the TensorIndexType.delta attribute instead. """, deprecated_since_version="1.5", active_deprecations_target="deprecated-tensorindextype-methods", ) def get_kronecker_delta(self): sym2 = TensorSymmetry(get_symmetric_group_sgs(2)) delta = TensorHead('KD', [self]*2, sym2) return delta @deprecated( """ The TensorIndexType.get_epsilon() method is deprecated. Use the TensorIndexType.epsilon attribute instead. """, deprecated_since_version="1.5", active_deprecations_target="deprecated-tensorindextype-methods", ) def get_epsilon(self): if not isinstance(self._eps_dim, (SYMPY_INTS, Integer)): return None sym = TensorSymmetry(get_symmetric_group_sgs(self._eps_dim, 1)) epsilon = TensorHead('Eps', [self]*self._eps_dim, sym) return epsilon def _components_data_full_destroy(self): """ EXPERIMENTAL: do not rely on this API method. This destroys components data associated to the ``TensorIndexType``, if any, specifically: * metric tensor data * Kronecker tensor data """ if self in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self] def delete_tensmul_data(key): if key in _tensor_data_substitution_dict._substitutions_dict_tensmul: del _tensor_data_substitution_dict._substitutions_dict_tensmul[key] # delete metric data: delete_tensmul_data((self.metric, True, True)) delete_tensmul_data((self.metric, True, False)) delete_tensmul_data((self.metric, False, True)) delete_tensmul_data((self.metric, False, False)) # delete delta tensor data: delta = self.get_kronecker_delta() if delta in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[delta] class TensorIndex(Basic): """ Represents a tensor index Parameters ========== name : name of the index, or ``True`` if you want it to be automatically assigned tensor_index_type : ``TensorIndexType`` of the index is_up : flag for contravariant index (is_up=True by default) Attributes ========== ``name`` ``tensor_index_type`` ``is_up`` Notes ===== Tensor indices are contracted with the Einstein summation convention. An index can be in contravariant or in covariant form; in the latter case it is represented prepending a ``-`` to the index name. Adding ``-`` to a covariant (is_up=False) index makes it contravariant. Dummy indices have a name with head given by ``tensor_inde_type.dummy_name`` with underscore and a number. Similar to ``symbols`` multiple contravariant indices can be created at once using ``tensor_indices(s, typ)``, where ``s`` is a string of names. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, TensorIndex, TensorHead, tensor_indices >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> mu = TensorIndex('mu', Lorentz, is_up=False) >>> nu, rho = tensor_indices('nu, rho', Lorentz) >>> A = TensorHead('A', [Lorentz, Lorentz]) >>> A(mu, nu) A(-mu, nu) >>> A(-mu, -rho) A(mu, -rho) >>> A(mu, -mu) A(-L_0, L_0) """ def __new__(cls, name, tensor_index_type, is_up=True): if isinstance(name, str): name_symbol = Symbol(name) elif isinstance(name, Symbol): name_symbol = name elif name is True: name = "_i{}".format(len(tensor_index_type._autogenerated)) name_symbol = Symbol(name) tensor_index_type._autogenerated.append(name_symbol) else: raise ValueError("invalid name") is_up = sympify(is_up) return Basic.__new__(cls, name_symbol, tensor_index_type, is_up) @property def name(self): return self.args[0].name @property def tensor_index_type(self): return self.args[1] @property def is_up(self): return self.args[2] def _print(self): s = self.name if not self.is_up: s = '-%s' % s return s def __lt__(self, other): return ((self.tensor_index_type, self.name) < (other.tensor_index_type, other.name)) def __neg__(self): t1 = TensorIndex(self.name, self.tensor_index_type, (not self.is_up)) return t1 def tensor_indices(s, typ): """ Returns list of tensor indices given their names and their types. Parameters ========== s : string of comma separated names of indices typ : ``TensorIndexType`` of the indices Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz) """ if isinstance(s, str): a = [x.name for x in symbols(s, seq=True)] else: raise ValueError('expecting a string') tilist = [TensorIndex(i, typ) for i in a] if len(tilist) == 1: return tilist[0] return tilist class TensorSymmetry(Basic): """ Monoterm symmetry of a tensor (i.e. any symmetric or anti-symmetric index permutation). For the relevant terminology see ``tensor_can.py`` section of the combinatorics module. Parameters ========== bsgs : tuple ``(base, sgs)`` BSGS of the symmetry of the tensor Attributes ========== ``base`` : base of the BSGS ``generators`` : generators of the BSGS ``rank`` : rank of the tensor Notes ===== A tensor can have an arbitrary monoterm symmetry provided by its BSGS. Multiterm symmetries, like the cyclic symmetry of the Riemann tensor (i.e., Bianchi identity), are not covered. See combinatorics module for information on how to generate BSGS for a general index permutation group. Simple symmetries can be generated using built-in methods. See Also ======== sympy.combinatorics.tensor_can.get_symmetric_group_sgs Examples ======== Define a symmetric tensor of rank 2 >>> from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, TensorHead >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> sym = TensorSymmetry(get_symmetric_group_sgs(2)) >>> T = TensorHead('T', [Lorentz]*2, sym) Note, that the same can also be done using built-in TensorSymmetry methods >>> sym2 = TensorSymmetry.fully_symmetric(2) >>> sym == sym2 True """ def __new__(cls, *args, **kw_args): if len(args) == 1: base, generators = args[0] elif len(args) == 2: base, generators = args else: raise TypeError("bsgs required, either two separate parameters or one tuple") if not isinstance(base, Tuple): base = Tuple(*base) if not isinstance(generators, Tuple): generators = Tuple(*generators) return Basic.__new__(cls, base, generators, **kw_args) @property def base(self): return self.args[0] @property def generators(self): return self.args[1] @property def rank(self): return self.generators[0].size - 2 @classmethod def fully_symmetric(cls, rank): """ Returns a fully symmetric (antisymmetric if ``rank``<0) TensorSymmetry object for ``abs(rank)`` indices. """ if rank > 0: bsgs = get_symmetric_group_sgs(rank, False) elif rank < 0: bsgs = get_symmetric_group_sgs(-rank, True) elif rank == 0: bsgs = ([], [Permutation(1)]) return TensorSymmetry(bsgs) @classmethod def direct_product(cls, *args): """ Returns a TensorSymmetry object that is being a direct product of fully (anti-)symmetric index permutation groups. Notes ===== Some examples for different values of ``(*args)``: ``(1)`` vector, equivalent to ``TensorSymmetry.fully_symmetric(1)`` ``(2)`` tensor with 2 symmetric indices, equivalent to ``.fully_symmetric(2)`` ``(-2)`` tensor with 2 antisymmetric indices, equivalent to ``.fully_symmetric(-2)`` ``(2, -2)`` tensor with the first 2 indices commuting and the last 2 anticommuting ``(1, 1, 1)`` tensor with 3 indices without any symmetry """ base, sgs = [], [Permutation(1)] for arg in args: if arg > 0: bsgs2 = get_symmetric_group_sgs(arg, False) elif arg < 0: bsgs2 = get_symmetric_group_sgs(-arg, True) else: continue base, sgs = bsgs_direct_product(base, sgs, *bsgs2) return TensorSymmetry(base, sgs) @classmethod def riemann(cls): """ Returns a monotorem symmetry of the Riemann tensor """ return TensorSymmetry(riemann_bsgs) @classmethod def no_symmetry(cls, rank): """ TensorSymmetry object for ``rank`` indices with no symmetry """ return TensorSymmetry([], [Permutation(rank+1)]) @deprecated( """ The tensorsymmetry() function is deprecated. Use the TensorSymmetry constructor instead. """, deprecated_since_version="1.5", active_deprecations_target="deprecated-tensorsymmetry", ) def tensorsymmetry(*args): """ Returns a ``TensorSymmetry`` object. This method is deprecated, use ``TensorSymmetry.direct_product()`` or ``.riemann()`` instead. Explanation =========== One can represent a tensor with any monoterm slot symmetry group using a BSGS. ``args`` can be a BSGS ``args[0]`` base ``args[1]`` sgs Usually tensors are in (direct products of) representations of the symmetric group; ``args`` can be a list of lists representing the shapes of Young tableaux Notes ===== For instance: ``[[1]]`` vector ``[[1]*n]`` symmetric tensor of rank ``n`` ``[[n]]`` antisymmetric tensor of rank ``n`` ``[[2, 2]]`` monoterm slot symmetry of the Riemann tensor ``[[1],[1]]`` vector*vector ``[[2],[1],[1]`` (antisymmetric tensor)*vector*vector Notice that with the shape ``[2, 2]`` we associate only the monoterm symmetries of the Riemann tensor; this is an abuse of notation, since the shape ``[2, 2]`` corresponds usually to the irreducible representation characterized by the monoterm symmetries and by the cyclic symmetry. """ from sympy.combinatorics import Permutation def tableau2bsgs(a): if len(a) == 1: # antisymmetric vector n = a[0] bsgs = get_symmetric_group_sgs(n, 1) else: if all(x == 1 for x in a): # symmetric vector n = len(a) bsgs = get_symmetric_group_sgs(n) elif a == [2, 2]: bsgs = riemann_bsgs else: raise NotImplementedError return bsgs if not args: return TensorSymmetry(Tuple(), Tuple(Permutation(1))) if len(args) == 2 and isinstance(args[1][0], Permutation): return TensorSymmetry(args) base, sgs = tableau2bsgs(args[0]) for a in args[1:]: basex, sgsx = tableau2bsgs(a) base, sgs = bsgs_direct_product(base, sgs, basex, sgsx) return TensorSymmetry(Tuple(base, sgs)) @deprecated( "TensorType is deprecated. Use tensor_heads() instead.", deprecated_since_version="1.5", active_deprecations_target="deprecated-tensortype", ) class TensorType(Basic): """ Class of tensor types. Deprecated, use tensor_heads() instead. Parameters ========== index_types : list of ``TensorIndexType`` of the tensor indices symmetry : ``TensorSymmetry`` of the tensor Attributes ========== ``index_types`` ``symmetry`` ``types`` : list of ``TensorIndexType`` without repetitions """ is_commutative = False def __new__(cls, index_types, symmetry, **kw_args): assert symmetry.rank == len(index_types) obj = Basic.__new__(cls, Tuple(*index_types), symmetry, **kw_args) return obj @property def index_types(self): return self.args[0] @property def symmetry(self): return self.args[1] @property def types(self): return sorted(set(self.index_types), key=lambda x: x.name) def __str__(self): return 'TensorType(%s)' % ([str(x) for x in self.index_types]) def __call__(self, s, comm=0): """ Return a TensorHead object or a list of TensorHead objects. Parameters ========== s : name or string of names. comm : Commutation group. see ``_TensorManager.set_comm`` """ if isinstance(s, str): names = [x.name for x in symbols(s, seq=True)] else: raise ValueError('expecting a string') if len(names) == 1: return TensorHead(names[0], self.index_types, self.symmetry, comm) else: return [TensorHead(name, self.index_types, self.symmetry, comm) for name in names] @deprecated( """ The tensorhead() function is deprecated. Use tensor_heads() instead. """, deprecated_since_version="1.5", active_deprecations_target="deprecated-tensorhead", ) def tensorhead(name, typ, sym=None, comm=0): """ Function generating tensorhead(s). This method is deprecated, use TensorHead constructor or tensor_heads() instead. Parameters ========== name : name or sequence of names (as in ``symbols``) typ : index types sym : same as ``*args`` in ``tensorsymmetry`` comm : commutation group number see ``_TensorManager.set_comm`` """ if sym is None: sym = [[1] for i in range(len(typ))] with ignore_warnings(SymPyDeprecationWarning): sym = tensorsymmetry(*sym) return TensorHead(name, typ, sym, comm) class TensorHead(Basic): """ Tensor head of the tensor. Parameters ========== name : name of the tensor index_types : list of TensorIndexType symmetry : TensorSymmetry of the tensor comm : commutation group number Attributes ========== ``name`` ``index_types`` ``rank`` : total number of indices ``symmetry`` ``comm`` : commutation group Notes ===== Similar to ``symbols`` multiple TensorHeads can be created using ``tensorhead(s, typ, sym=None, comm=0)`` function, where ``s`` is the string of names and ``sym`` is the monoterm tensor symmetry (see ``tensorsymmetry``). A ``TensorHead`` belongs to a commutation group, defined by a symbol on number ``comm`` (see ``_TensorManager.set_comm``); tensors in a commutation group have the same commutation properties; by default ``comm`` is ``0``, the group of the commuting tensors. Examples ======== Define a fully antisymmetric tensor of rank 2: >>> from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorSymmetry >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> asym2 = TensorSymmetry.fully_symmetric(-2) >>> A = TensorHead('A', [Lorentz, Lorentz], asym2) Examples with ndarray values, the components data assigned to the ``TensorHead`` object are assumed to be in a fully-contravariant representation. In case it is necessary to assign components data which represents the values of a non-fully covariant tensor, see the other examples. >>> from sympy.tensor.tensor import tensor_indices >>> from sympy import diag >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> i0, i1 = tensor_indices('i0:2', Lorentz) Specify a replacement dictionary to keep track of the arrays to use for replacements in the tensorial expression. The ``TensorIndexType`` is associated to the metric used for contractions (in fully covariant form): >>> repl = {Lorentz: diag(1, -1, -1, -1)} Let's see some examples of working with components with the electromagnetic tensor: >>> from sympy import symbols >>> Ex, Ey, Ez, Bx, By, Bz = symbols('E_x E_y E_z B_x B_y B_z') >>> c = symbols('c', positive=True) Let's define `F`, an antisymmetric tensor: >>> F = TensorHead('F', [Lorentz, Lorentz], asym2) Let's update the dictionary to contain the matrix to use in the replacements: >>> repl.update({F(-i0, -i1): [ ... [0, Ex/c, Ey/c, Ez/c], ... [-Ex/c, 0, -Bz, By], ... [-Ey/c, Bz, 0, -Bx], ... [-Ez/c, -By, Bx, 0]]}) Now it is possible to retrieve the contravariant form of the Electromagnetic tensor: >>> F(i0, i1).replace_with_arrays(repl, [i0, i1]) [[0, -E_x/c, -E_y/c, -E_z/c], [E_x/c, 0, -B_z, B_y], [E_y/c, B_z, 0, -B_x], [E_z/c, -B_y, B_x, 0]] and the mixed contravariant-covariant form: >>> F(i0, -i1).replace_with_arrays(repl, [i0, -i1]) [[0, E_x/c, E_y/c, E_z/c], [E_x/c, 0, B_z, -B_y], [E_y/c, -B_z, 0, B_x], [E_z/c, B_y, -B_x, 0]] Energy-momentum of a particle may be represented as: >>> from sympy import symbols >>> P = TensorHead('P', [Lorentz], TensorSymmetry.no_symmetry(1)) >>> E, px, py, pz = symbols('E p_x p_y p_z', positive=True) >>> repl.update({P(i0): [E, px, py, pz]}) The contravariant and covariant components are, respectively: >>> P(i0).replace_with_arrays(repl, [i0]) [E, p_x, p_y, p_z] >>> P(-i0).replace_with_arrays(repl, [-i0]) [E, -p_x, -p_y, -p_z] The contraction of a 1-index tensor by itself: >>> expr = P(i0)*P(-i0) >>> expr.replace_with_arrays(repl, []) E**2 - p_x**2 - p_y**2 - p_z**2 """ is_commutative = False def __new__(cls, name, index_types, symmetry=None, comm=0): if isinstance(name, str): name_symbol = Symbol(name) elif isinstance(name, Symbol): name_symbol = name else: raise ValueError("invalid name") if symmetry is None: symmetry = TensorSymmetry.no_symmetry(len(index_types)) else: assert symmetry.rank == len(index_types) obj = Basic.__new__(cls, name_symbol, Tuple(*index_types), symmetry) obj.comm = TensorManager.comm_symbols2i(comm) return obj @property def name(self): return self.args[0].name @property def index_types(self): return list(self.args[1]) @property def symmetry(self): return self.args[2] @property def rank(self): return len(self.index_types) def __lt__(self, other): return (self.name, self.index_types) < (other.name, other.index_types) def commutes_with(self, other): """ Returns ``0`` if ``self`` and ``other`` commute, ``1`` if they anticommute. Returns ``None`` if ``self`` and ``other`` neither commute nor anticommute. """ r = TensorManager.get_comm(self.comm, other.comm) return r def _print(self): return '%s(%s)' %(self.name, ','.join([str(x) for x in self.index_types])) def __call__(self, *indices, **kw_args): """ Returns a tensor with indices. Explanation =========== There is a special behavior in case of indices denoted by ``True``, they are considered auto-matrix indices, their slots are automatically filled, and confer to the tensor the behavior of a matrix or vector upon multiplication with another tensor containing auto-matrix indices of the same ``TensorIndexType``. This means indices get summed over the same way as in matrix multiplication. For matrix behavior, define two auto-matrix indices, for vector behavior define just one. Indices can also be strings, in which case the attribute ``index_types`` is used to convert them to proper ``TensorIndex``. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorSymmetry, TensorHead >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> a, b = tensor_indices('a,b', Lorentz) >>> A = TensorHead('A', [Lorentz]*2, TensorSymmetry.no_symmetry(2)) >>> t = A(a, -b) >>> t A(a, -b) """ updated_indices = [] for idx, typ in zip(indices, self.index_types): if isinstance(idx, str): idx = idx.strip().replace(" ", "") if idx.startswith('-'): updated_indices.append(TensorIndex(idx[1:], typ, is_up=False)) else: updated_indices.append(TensorIndex(idx, typ)) else: updated_indices.append(idx) updated_indices += indices[len(updated_indices):] tensor = Tensor(self, updated_indices, **kw_args) return tensor.doit() # Everything below this line is deprecated def __pow__(self, other): deprecate_data() with ignore_warnings(SymPyDeprecationWarning): if self.data is None: raise ValueError("No power on abstract tensors.") from .array import tensorproduct, tensorcontraction metrics = [_.data for _ in self.index_types] marray = self.data marraydim = marray.rank() for metric in metrics: marray = tensorproduct(marray, metric, marray) marray = tensorcontraction(marray, (0, marraydim), (marraydim+1, marraydim+2)) return marray ** (other * S.Half) @property def data(self): deprecate_data() with ignore_warnings(SymPyDeprecationWarning): return _tensor_data_substitution_dict[self] @data.setter def data(self, data): deprecate_data() with ignore_warnings(SymPyDeprecationWarning): _tensor_data_substitution_dict[self] = data @data.deleter def data(self): deprecate_data() if self in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self] def __iter__(self): deprecate_data() with ignore_warnings(SymPyDeprecationWarning): return self.data.__iter__() def _components_data_full_destroy(self): """ EXPERIMENTAL: do not rely on this API method. Destroy components data associated to the ``TensorHead`` object, this checks for attached components data, and destroys components data too. """ # do not garbage collect Kronecker tensor (it should be done by # ``TensorIndexType`` garbage collection) deprecate_data() if self.name == "KD": return # the data attached to a tensor must be deleted only by the TensorHead # destructor. If the TensorHead is deleted, it means that there are no # more instances of that tensor anywhere. if self in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self] def tensor_heads(s, index_types, symmetry=None, comm=0): """ Returns a sequence of TensorHeads from a string `s` """ if isinstance(s, str): names = [x.name for x in symbols(s, seq=True)] else: raise ValueError('expecting a string') thlist = [TensorHead(name, index_types, symmetry, comm) for name in names] if len(thlist) == 1: return thlist[0] return thlist class _TensorMetaclass(ManagedProperties, ABCMeta): pass class TensExpr(Expr, metaclass=_TensorMetaclass): """ Abstract base class for tensor expressions Notes ===== A tensor expression is an expression formed by tensors; currently the sums of tensors are distributed. A ``TensExpr`` can be a ``TensAdd`` or a ``TensMul``. ``TensMul`` objects are formed by products of component tensors, and include a coefficient, which is a SymPy expression. In the internal representation contracted indices are represented by ``(ipos1, ipos2, icomp1, icomp2)``, where ``icomp1`` is the position of the component tensor with contravariant index, ``ipos1`` is the slot which the index occupies in that component tensor. Contracted indices are therefore nameless in the internal representation. """ _op_priority = 12.0 is_commutative = False def __neg__(self): return self*S.NegativeOne def __abs__(self): raise NotImplementedError def __add__(self, other): return TensAdd(self, other).doit() def __radd__(self, other): return TensAdd(other, self).doit() def __sub__(self, other): return TensAdd(self, -other).doit() def __rsub__(self, other): return TensAdd(other, -self).doit() def __mul__(self, other): """ Multiply two tensors using Einstein summation convention. Explanation =========== If the two tensors have an index in common, one contravariant and the other covariant, in their product the indices are summed Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz) >>> g = Lorentz.metric >>> p, q = tensor_heads('p,q', [Lorentz]) >>> t1 = p(m0) >>> t2 = q(-m0) >>> t1*t2 p(L_0)*q(-L_0) """ return TensMul(self, other).doit() def __rmul__(self, other): return TensMul(other, self).doit() def __truediv__(self, other): other = _sympify(other) if isinstance(other, TensExpr): raise ValueError('cannot divide by a tensor') return TensMul(self, S.One/other).doit() def __rtruediv__(self, other): raise ValueError('cannot divide by a tensor') def __pow__(self, other): deprecate_data() with ignore_warnings(SymPyDeprecationWarning): if self.data is None: raise ValueError("No power without ndarray data.") from .array import tensorproduct, tensorcontraction free = self.free marray = self.data mdim = marray.rank() for metric in free: marray = tensorcontraction( tensorproduct( marray, metric[0].tensor_index_type.data, marray), (0, mdim), (mdim+1, mdim+2) ) return marray ** (other * S.Half) def __rpow__(self, other): raise NotImplementedError @property @abstractmethod def nocoeff(self): raise NotImplementedError("abstract method") @property @abstractmethod def coeff(self): raise NotImplementedError("abstract method") @abstractmethod def get_indices(self): raise NotImplementedError("abstract method") @abstractmethod def get_free_indices(self): # type: () -> List[TensorIndex] raise NotImplementedError("abstract method") @abstractmethod def _replace_indices(self, repl): # type: (tDict[TensorIndex, TensorIndex]) -> TensExpr raise NotImplementedError("abstract method") def fun_eval(self, *index_tuples): deprecate_fun_eval() return self.substitute_indices(*index_tuples) def get_matrix(self): """ DEPRECATED: do not use. Returns ndarray components data as a matrix, if components data are available and ndarray dimension does not exceed 2. """ from sympy.matrices.dense import Matrix deprecate_data() with ignore_warnings(SymPyDeprecationWarning): if 0 < self.rank <= 2: rows = self.data.shape[0] columns = self.data.shape[1] if self.rank == 2 else 1 if self.rank == 2: mat_list = [] * rows for i in range(rows): mat_list.append([]) for j in range(columns): mat_list[i].append(self[i, j]) else: mat_list = [None] * rows for i in range(rows): mat_list[i] = self[i] return Matrix(mat_list) else: raise NotImplementedError( "missing multidimensional reduction to matrix.") @staticmethod def _get_indices_permutation(indices1, indices2): return [indices1.index(i) for i in indices2] def expand(self, **hints): return _expand(self, **hints).doit() def _expand(self, **kwargs): return self def _get_free_indices_set(self): indset = set() for arg in self.args: if isinstance(arg, TensExpr): indset.update(arg._get_free_indices_set()) return indset def _get_dummy_indices_set(self): indset = set() for arg in self.args: if isinstance(arg, TensExpr): indset.update(arg._get_dummy_indices_set()) return indset def _get_indices_set(self): indset = set() for arg in self.args: if isinstance(arg, TensExpr): indset.update(arg._get_indices_set()) return indset @property def _iterate_dummy_indices(self): dummy_set = self._get_dummy_indices_set() def recursor(expr, pos): if isinstance(expr, TensorIndex): if expr in dummy_set: yield (expr, pos) elif isinstance(expr, (Tuple, TensExpr)): for p, arg in enumerate(expr.args): yield from recursor(arg, pos+(p,)) return recursor(self, ()) @property def _iterate_free_indices(self): free_set = self._get_free_indices_set() def recursor(expr, pos): if isinstance(expr, TensorIndex): if expr in free_set: yield (expr, pos) elif isinstance(expr, (Tuple, TensExpr)): for p, arg in enumerate(expr.args): yield from recursor(arg, pos+(p,)) return recursor(self, ()) @property def _iterate_indices(self): def recursor(expr, pos): if isinstance(expr, TensorIndex): yield (expr, pos) elif isinstance(expr, (Tuple, TensExpr)): for p, arg in enumerate(expr.args): yield from recursor(arg, pos+(p,)) return recursor(self, ()) @staticmethod def _contract_and_permute_with_metric(metric, array, pos, dim): # TODO: add possibility of metric after (spinors) from .array import tensorcontraction, tensorproduct, permutedims array = tensorcontraction(tensorproduct(metric, array), (1, 2+pos)) permu = list(range(dim)) permu[0], permu[pos] = permu[pos], permu[0] return permutedims(array, permu) @staticmethod def _match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict): from .array import permutedims index_types1 = [i.tensor_index_type for i in free_ind1] # Check if variance of indices needs to be fixed: pos2up = [] pos2down = [] free2remaining = free_ind2[:] for pos1, index1 in enumerate(free_ind1): if index1 in free2remaining: pos2 = free2remaining.index(index1) free2remaining[pos2] = None continue if -index1 in free2remaining: pos2 = free2remaining.index(-index1) free2remaining[pos2] = None free_ind2[pos2] = index1 if index1.is_up: pos2up.append(pos2) else: pos2down.append(pos2) else: index2 = free2remaining[pos1] if index2 is None: raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2)) free2remaining[pos1] = None free_ind2[pos1] = index1 if index1.is_up ^ index2.is_up: if index1.is_up: pos2up.append(pos1) else: pos2down.append(pos1) if len(set(free_ind1) & set(free_ind2)) < len(free_ind1): raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2)) # Raise indices: for pos in pos2up: index_type_pos = index_types1[pos] # type: TensorIndexType if index_type_pos not in replacement_dict: raise ValueError("No metric provided to lower index") metric = replacement_dict[index_type_pos] metric_inverse = _TensorDataLazyEvaluator.inverse_matrix(metric) array = TensExpr._contract_and_permute_with_metric(metric_inverse, array, pos, len(free_ind1)) # Lower indices: for pos in pos2down: index_type_pos = index_types1[pos] # type: TensorIndexType if index_type_pos not in replacement_dict: raise ValueError("No metric provided to lower index") metric = replacement_dict[index_type_pos] array = TensExpr._contract_and_permute_with_metric(metric, array, pos, len(free_ind1)) if free_ind1: permutation = TensExpr._get_indices_permutation(free_ind2, free_ind1) array = permutedims(array, permutation) if hasattr(array, "rank") and array.rank() == 0: array = array[()] return free_ind2, array def replace_with_arrays(self, replacement_dict, indices=None): """ Replace the tensorial expressions with arrays. The final array will correspond to the N-dimensional array with indices arranged according to ``indices``. Parameters ========== replacement_dict dictionary containing the replacement rules for tensors. indices the index order with respect to which the array is read. The original index order will be used if no value is passed. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices >>> from sympy.tensor.tensor import TensorHead >>> from sympy import symbols, diag >>> L = TensorIndexType("L") >>> i, j = tensor_indices("i j", L) >>> A = TensorHead("A", [L]) >>> A(i).replace_with_arrays({A(i): [1, 2]}, [i]) [1, 2] Since 'indices' is optional, we can also call replace_with_arrays by this way if no specific index order is needed: >>> A(i).replace_with_arrays({A(i): [1, 2]}) [1, 2] >>> expr = A(i)*A(j) >>> expr.replace_with_arrays({A(i): [1, 2]}) [[1, 2], [2, 4]] For contractions, specify the metric of the ``TensorIndexType``, which in this case is ``L``, in its covariant form: >>> expr = A(i)*A(-i) >>> expr.replace_with_arrays({A(i): [1, 2], L: diag(1, -1)}) -3 Symmetrization of an array: >>> H = TensorHead("H", [L, L]) >>> a, b, c, d = symbols("a b c d") >>> expr = H(i, j)/2 + H(j, i)/2 >>> expr.replace_with_arrays({H(i, j): [[a, b], [c, d]]}) [[a, b/2 + c/2], [b/2 + c/2, d]] Anti-symmetrization of an array: >>> expr = H(i, j)/2 - H(j, i)/2 >>> repl = {H(i, j): [[a, b], [c, d]]} >>> expr.replace_with_arrays(repl) [[0, b/2 - c/2], [-b/2 + c/2, 0]] The same expression can be read as the transpose by inverting ``i`` and ``j``: >>> expr.replace_with_arrays(repl, [j, i]) [[0, -b/2 + c/2], [b/2 - c/2, 0]] """ from .array import Array indices = indices or [] replacement_dict = {tensor: Array(array) for tensor, array in replacement_dict.items()} # Check dimensions of replaced arrays: for tensor, array in replacement_dict.items(): if isinstance(tensor, TensorIndexType): expected_shape = [tensor.dim for i in range(2)] else: expected_shape = [index_type.dim for index_type in tensor.index_types] if len(expected_shape) != array.rank() or (not all(dim1 == dim2 if dim1.is_number else True for dim1, dim2 in zip(expected_shape, array.shape))): raise ValueError("shapes for tensor %s expected to be %s, "\ "replacement array shape is %s" % (tensor, expected_shape, array.shape)) ret_indices, array = self._extract_data(replacement_dict) last_indices, array = self._match_indices_with_other_tensor(array, indices, ret_indices, replacement_dict) return array def _check_add_Sum(self, expr, index_symbols): from sympy.concrete.summations import Sum indices = self.get_indices() dum = self.dum sum_indices = [ (index_symbols[i], 0, indices[i].tensor_index_type.dim-1) for i, j in dum] if sum_indices: expr = Sum(expr, *sum_indices) return expr def _expand_partial_derivative(self): # simply delegate the _expand_partial_derivative() to # its arguments to expand a possibly found PartialDerivative return self.func(*[ a._expand_partial_derivative() if isinstance(a, TensExpr) else a for a in self.args]) class TensAdd(TensExpr, AssocOp): """ Sum of tensors. Parameters ========== free_args : list of the free indices Attributes ========== ``args`` : tuple of addends ``rank`` : rank of the tensor ``free_args`` : list of the free indices in sorted order Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_heads, tensor_indices >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> a, b = tensor_indices('a,b', Lorentz) >>> p, q = tensor_heads('p,q', [Lorentz]) >>> t = p(a) + q(a); t p(a) + q(a) Examples with components data added to the tensor expression: >>> from sympy import symbols, diag >>> x, y, z, t = symbols("x y z t") >>> repl = {} >>> repl[Lorentz] = diag(1, -1, -1, -1) >>> repl[p(a)] = [1, 2, 3, 4] >>> repl[q(a)] = [x, y, z, t] The following are: 2**2 - 3**2 - 2**2 - 7**2 ==> -58 >>> expr = p(a) + q(a) >>> expr.replace_with_arrays(repl, [a]) [x + 1, y + 2, z + 3, t + 4] """ def __new__(cls, *args, **kw_args): args = [_sympify(x) for x in args if x] args = TensAdd._tensAdd_flatten(args) args.sort(key=default_sort_key) if not args: return S.Zero if len(args) == 1: return args[0] return Basic.__new__(cls, *args, **kw_args) @property def coeff(self): return S.One @property def nocoeff(self): return self def get_free_indices(self): # type: () -> List[TensorIndex] return self.free_indices def _replace_indices(self, repl): # type: (tDict[TensorIndex, TensorIndex]) -> TensExpr newargs = [arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg for arg in self.args] return self.func(*newargs) @memoize_property def rank(self): if isinstance(self.args[0], TensExpr): return self.args[0].rank else: return 0 @memoize_property def free_args(self): if isinstance(self.args[0], TensExpr): return self.args[0].free_args else: return [] @memoize_property def free_indices(self): if isinstance(self.args[0], TensExpr): return self.args[0].get_free_indices() else: return set() def doit(self, **kwargs): deep = kwargs.get('deep', True) if deep: args = [arg.doit(**kwargs) for arg in self.args] else: args = self.args if not args: return S.Zero if len(args) == 1 and not isinstance(args[0], TensExpr): return args[0] # now check that all addends have the same indices: TensAdd._tensAdd_check(args) # if TensAdd has only 1 element in its `args`: if len(args) == 1: # and isinstance(args[0], TensMul): return args[0] # Remove zeros: args = [x for x in args if x] # if there are no more args (i.e. have cancelled out), # just return zero: if not args: return S.Zero if len(args) == 1: return args[0] # Collect terms appearing more than once, differing by their coefficients: args = TensAdd._tensAdd_collect_terms(args) # collect canonicalized terms def sort_key(t): if not isinstance(t, TensExpr): return [], [], [] if hasattr(t, "_index_structure") and hasattr(t, "components"): x = get_index_structure(t) return t.components, x.free, x.dum return [], [], [] args.sort(key=sort_key) if not args: return S.Zero # it there is only a component tensor return it if len(args) == 1: return args[0] obj = self.func(*args) return obj @staticmethod def _tensAdd_flatten(args): # flatten TensAdd, coerce terms which are not tensors to tensors a = [] for x in args: if isinstance(x, (Add, TensAdd)): a.extend(list(x.args)) else: a.append(x) args = [x for x in a if x.coeff] return args @staticmethod def _tensAdd_check(args): # check that all addends have the same free indices def get_indices_set(x): # type: (Expr) -> tSet[TensorIndex] if isinstance(x, TensExpr): return set(x.get_free_indices()) return set() indices0 = get_indices_set(args[0]) # type: tSet[TensorIndex] list_indices = [get_indices_set(arg) for arg in args[1:]] # type: List[tSet[TensorIndex]] if not all(x == indices0 for x in list_indices): raise ValueError('all tensors must have the same indices') @staticmethod def _tensAdd_collect_terms(args): # collect TensMul terms differing at most by their coefficient terms_dict = defaultdict(list) scalars = S.Zero if isinstance(args[0], TensExpr): free_indices = set(args[0].get_free_indices()) else: free_indices = set() for arg in args: if not isinstance(arg, TensExpr): if free_indices != set(): raise ValueError("wrong valence") scalars += arg continue if free_indices != set(arg.get_free_indices()): raise ValueError("wrong valence") # TODO: what is the part which is not a coeff? # needs an implementation similar to .as_coeff_Mul() terms_dict[arg.nocoeff].append(arg.coeff) new_args = [TensMul(Add(*coeff), t).doit() for t, coeff in terms_dict.items() if Add(*coeff) != 0] if isinstance(scalars, Add): new_args = list(scalars.args) + new_args elif scalars != 0: new_args = [scalars] + new_args return new_args def get_indices(self): indices = [] for arg in self.args: indices.extend([i for i in get_indices(arg) if i not in indices]) return indices def _expand(self, **hints): return TensAdd(*[_expand(i, **hints) for i in self.args]) def __call__(self, *indices): deprecate_call() free_args = self.free_args indices = list(indices) if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]: raise ValueError('incompatible types') if indices == free_args: return self index_tuples = list(zip(free_args, indices)) a = [x.func(*x.substitute_indices(*index_tuples).args) for x in self.args] res = TensAdd(*a).doit() return res def canon_bp(self): """ Canonicalize using the Butler-Portugal algorithm for canonicalization under monoterm symmetries. """ expr = self.expand() args = [canon_bp(x) for x in expr.args] res = TensAdd(*args).doit() return res def equals(self, other): other = _sympify(other) if isinstance(other, TensMul) and other.coeff == 0: return all(x.coeff == 0 for x in self.args) if isinstance(other, TensExpr): if self.rank != other.rank: return False if isinstance(other, TensAdd): if set(self.args) != set(other.args): return False else: return True t = self - other if not isinstance(t, TensExpr): return t == 0 else: if isinstance(t, TensMul): return t.coeff == 0 else: return all(x.coeff == 0 for x in t.args) def __getitem__(self, item): deprecate_data() with ignore_warnings(SymPyDeprecationWarning): return self.data[item] def contract_delta(self, delta): args = [x.contract_delta(delta) for x in self.args] t = TensAdd(*args).doit() return canon_bp(t) def contract_metric(self, g): """ Raise or lower indices with the metric ``g``. Parameters ========== g : metric contract_all : if True, eliminate all ``g`` which are contracted Notes ===== see the ``TensorIndexType`` docstring for the contraction conventions """ args = [contract_metric(x, g) for x in self.args] t = TensAdd(*args).doit() return canon_bp(t) def substitute_indices(self, *index_tuples): new_args = [] for arg in self.args: if isinstance(arg, TensExpr): arg = arg.substitute_indices(*index_tuples) new_args.append(arg) return TensAdd(*new_args).doit() def _print(self): a = [] args = self.args for x in args: a.append(str(x)) s = ' + '.join(a) s = s.replace('+ -', '- ') return s def _extract_data(self, replacement_dict): from sympy.tensor.array import Array, permutedims args_indices, arrays = zip(*[ arg._extract_data(replacement_dict) if isinstance(arg, TensExpr) else ([], arg) for arg in self.args ]) arrays = [Array(i) for i in arrays] ref_indices = args_indices[0] for i in range(1, len(args_indices)): indices = args_indices[i] array = arrays[i] permutation = TensMul._get_indices_permutation(indices, ref_indices) arrays[i] = permutedims(array, permutation) return ref_indices, sum(arrays, Array.zeros(*array.shape)) @property def data(self): deprecate_data() with ignore_warnings(SymPyDeprecationWarning): return _tensor_data_substitution_dict[self.expand()] @data.setter def data(self, data): deprecate_data() with ignore_warnings(SymPyDeprecationWarning): _tensor_data_substitution_dict[self] = data @data.deleter def data(self): deprecate_data() with ignore_warnings(SymPyDeprecationWarning): if self in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self] def __iter__(self): deprecate_data() if not self.data: raise ValueError("No iteration on abstract tensors") return self.data.flatten().__iter__() def _eval_rewrite_as_Indexed(self, *args): return Add.fromiter(args) def _eval_partial_derivative(self, s): # Evaluation like Add list_addends = [] for a in self.args: if isinstance(a, TensExpr): list_addends.append(a._eval_partial_derivative(s)) # do not call diff if s is no symbol elif s._diff_wrt: list_addends.append(a._eval_derivative(s)) return self.func(*list_addends) class Tensor(TensExpr): """ Base tensor class, i.e. this represents a tensor, the single unit to be put into an expression. Explanation =========== This object is usually created from a ``TensorHead``, by attaching indices to it. Indices preceded by a minus sign are considered contravariant, otherwise covariant. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead >>> Lorentz = TensorIndexType("Lorentz", dummy_name="L") >>> mu, nu = tensor_indices('mu nu', Lorentz) >>> A = TensorHead("A", [Lorentz, Lorentz]) >>> A(mu, -nu) A(mu, -nu) >>> A(mu, -mu) A(L_0, -L_0) It is also possible to use symbols instead of inidices (appropriate indices are then generated automatically). >>> from sympy import Symbol >>> x = Symbol('x') >>> A(x, mu) A(x, mu) >>> A(x, -x) A(L_0, -L_0) """ is_commutative = False _index_structure = None # type: _IndexStructure args: tTuple[TensorHead, Tuple] def __new__(cls, tensor_head, indices, *, is_canon_bp=False, **kw_args): indices = cls._parse_indices(tensor_head, indices) obj = Basic.__new__(cls, tensor_head, Tuple(*indices), **kw_args) obj._index_structure = _IndexStructure.from_indices(*indices) obj._free = obj._index_structure.free[:] obj._dum = obj._index_structure.dum[:] obj._ext_rank = obj._index_structure._ext_rank obj._coeff = S.One obj._nocoeff = obj obj._component = tensor_head obj._components = [tensor_head] if tensor_head.rank != len(indices): raise ValueError("wrong number of indices") obj.is_canon_bp = is_canon_bp obj._index_map = Tensor._build_index_map(indices, obj._index_structure) return obj @property def free(self): return self._free @property def dum(self): return self._dum @property def ext_rank(self): return self._ext_rank @property def coeff(self): return self._coeff @property def nocoeff(self): return self._nocoeff @property def component(self): return self._component @property def components(self): return self._components @property def head(self): return self.args[0] @property def indices(self): return self.args[1] @property def free_indices(self): return set(self._index_structure.get_free_indices()) @property def index_types(self): return self.head.index_types @property def rank(self): return len(self.free_indices) @staticmethod def _build_index_map(indices, index_structure): index_map = {} for idx in indices: index_map[idx] = (indices.index(idx),) return index_map def doit(self, **kwargs): args, indices, free, dum = TensMul._tensMul_contract_indices([self]) return args[0] @staticmethod def _parse_indices(tensor_head, indices): if not isinstance(indices, (tuple, list, Tuple)): raise TypeError("indices should be an array, got %s" % type(indices)) indices = list(indices) for i, index in enumerate(indices): if isinstance(index, Symbol): indices[i] = TensorIndex(index, tensor_head.index_types[i], True) elif isinstance(index, Mul): c, e = index.as_coeff_Mul() if c == -1 and isinstance(e, Symbol): indices[i] = TensorIndex(e, tensor_head.index_types[i], False) else: raise ValueError("index not understood: %s" % index) elif not isinstance(index, TensorIndex): raise TypeError("wrong type for index: %s is %s" % (index, type(index))) return indices def _set_new_index_structure(self, im, is_canon_bp=False): indices = im.get_indices() return self._set_indices(*indices, is_canon_bp=is_canon_bp) def _set_indices(self, *indices, is_canon_bp=False, **kw_args): if len(indices) != self.ext_rank: raise ValueError("indices length mismatch") return self.func(self.args[0], indices, is_canon_bp=is_canon_bp).doit() def _get_free_indices_set(self): return {i[0] for i in self._index_structure.free} def _get_dummy_indices_set(self): dummy_pos = set(itertools.chain(*self._index_structure.dum)) return {idx for i, idx in enumerate(self.args[1]) if i in dummy_pos} def _get_indices_set(self): return set(self.args[1].args) @property def free_in_args(self): return [(ind, pos, 0) for ind, pos in self.free] @property def dum_in_args(self): return [(p1, p2, 0, 0) for p1, p2 in self.dum] @property def free_args(self): return sorted([x[0] for x in self.free]) def commutes_with(self, other): """ :param other: :return: 0 commute 1 anticommute None neither commute nor anticommute """ if not isinstance(other, TensExpr): return 0 elif isinstance(other, Tensor): return self.component.commutes_with(other.component) return NotImplementedError def perm2tensor(self, g, is_canon_bp=False): """ Returns the tensor corresponding to the permutation ``g``. For further details, see the method in ``TIDS`` with the same name. """ return perm2tensor(self, g, is_canon_bp) def canon_bp(self): if self.is_canon_bp: return self expr = self.expand() g, dummies, msym = expr._index_structure.indices_canon_args() v = components_canon_args([expr.component]) can = canonicalize(g, dummies, msym, *v) if can == 0: return S.Zero tensor = self.perm2tensor(can, True) return tensor def split(self): return [self] def _expand(self, **kwargs): return self def sorted_components(self): return self def get_indices(self): # type: () -> List[TensorIndex] """ Get a list of indices, corresponding to those of the tensor. """ return list(self.args[1]) def get_free_indices(self): # type: () -> List[TensorIndex] """ Get a list of free indices, corresponding to those of the tensor. """ return self._index_structure.get_free_indices() def _replace_indices(self, repl): # type: (tDict[TensorIndex, TensorIndex]) -> Tensor # TODO: this could be optimized by only swapping the indices # instead of visiting the whole expression tree: return self.xreplace(repl) def as_base_exp(self): return self, S.One def substitute_indices(self, *index_tuples): """ Return a tensor with free indices substituted according to ``index_tuples``. ``index_types`` list of tuples ``(old_index, new_index)``. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads, TensorSymmetry >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz) >>> A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) >>> t = A(i, k)*B(-k, -j); t A(i, L_0)*B(-L_0, -j) >>> t.substitute_indices((i, k),(-j, l)) A(k, L_0)*B(-L_0, l) """ indices = [] for index in self.indices: for ind_old, ind_new in index_tuples: if (index.name == ind_old.name and index.tensor_index_type == ind_old.tensor_index_type): if index.is_up == ind_old.is_up: indices.append(ind_new) else: indices.append(-ind_new) break else: indices.append(index) return self.head(*indices) def __call__(self, *indices): deprecate_call() free_args = self.free_args indices = list(indices) if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]: raise ValueError('incompatible types') if indices == free_args: return self t = self.substitute_indices(*list(zip(free_args, indices))) # object is rebuilt in order to make sure that all contracted indices # get recognized as dummies, but only if there are contracted indices. if len({i if i.is_up else -i for i in indices}) != len(indices): return t.func(*t.args) return t # TODO: put this into TensExpr? def __iter__(self): deprecate_data() with ignore_warnings(SymPyDeprecationWarning): return self.data.__iter__() # TODO: put this into TensExpr? def __getitem__(self, item): deprecate_data() with ignore_warnings(SymPyDeprecationWarning): return self.data[item] def _extract_data(self, replacement_dict): from .array import Array for k, v in replacement_dict.items(): if isinstance(k, Tensor) and k.args[0] == self.args[0]: other = k array = v break else: raise ValueError("%s not found in %s" % (self, replacement_dict)) # TODO: inefficient, this should be done at root level only: replacement_dict = {k: Array(v) for k, v in replacement_dict.items()} array = Array(array) dum1 = self.dum dum2 = other.dum if len(dum2) > 0: for pair in dum2: # allow `dum2` if the contained values are also in `dum1`. if pair not in dum1: raise NotImplementedError("%s with contractions is not implemented" % other) # Remove elements in `dum2` from `dum1`: dum1 = [pair for pair in dum1 if pair not in dum2] if len(dum1) > 0: indices1 = self.get_indices() indices2 = other.get_indices() repl = {} for p1, p2 in dum1: repl[indices2[p2]] = -indices2[p1] for pos in (p1, p2): if indices1[pos].is_up ^ indices2[pos].is_up: metric = replacement_dict[indices1[pos].tensor_index_type] if indices1[pos].is_up: metric = _TensorDataLazyEvaluator.inverse_matrix(metric) array = self._contract_and_permute_with_metric(metric, array, pos, len(indices2)) other = other.xreplace(repl).doit() array = _TensorDataLazyEvaluator.data_contract_dum([array], dum1, len(indices2)) free_ind1 = self.get_free_indices() free_ind2 = other.get_free_indices() return self._match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict) @property def data(self): deprecate_data() with ignore_warnings(SymPyDeprecationWarning): return _tensor_data_substitution_dict[self] @data.setter def data(self, data): deprecate_data() # TODO: check data compatibility with properties of tensor. with ignore_warnings(SymPyDeprecationWarning): _tensor_data_substitution_dict[self] = data @data.deleter def data(self): deprecate_data() with ignore_warnings(SymPyDeprecationWarning): if self in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self] if self.metric in _tensor_data_substitution_dict: del _tensor_data_substitution_dict[self.metric] def _print(self): indices = [str(ind) for ind in self.indices] component = self.component if component.rank > 0: return ('%s(%s)' % (component.name, ', '.join(indices))) else: return ('%s' % component.name) def equals(self, other): if other == 0: return self.coeff == 0 other = _sympify(other) if not isinstance(other, TensExpr): assert not self.components return S.One == other def _get_compar_comp(self): t = self.canon_bp() r = (t.coeff, tuple(t.components), \ tuple(sorted(t.free)), tuple(sorted(t.dum))) return r return _get_compar_comp(self) == _get_compar_comp(other) def contract_metric(self, g): # if metric is not the same, ignore this step: if self.component != g: return self # in case there are free components, do not perform anything: if len(self.free) != 0: return self #antisym = g.index_types[0].metric_antisym if g.symmetry == TensorSymmetry.fully_symmetric(-2): antisym = 1 elif g.symmetry == TensorSymmetry.fully_symmetric(2): antisym = 0 elif g.symmetry == TensorSymmetry.no_symmetry(2): antisym = None else: raise NotImplementedError sign = S.One typ = g.index_types[0] if not antisym: # g(i, -i) sign = sign*typ.dim else: # g(i, -i) sign = sign*typ.dim dp0, dp1 = self.dum[0] if dp0 < dp1: # g(i, -i) = -D with antisymmetric metric sign = -sign return sign def contract_delta(self, metric): return self.contract_metric(metric) def _eval_rewrite_as_Indexed(self, tens, indices): from sympy.tensor.indexed import Indexed # TODO: replace .args[0] with .name: index_symbols = [i.args[0] for i in self.get_indices()] expr = Indexed(tens.args[0], *index_symbols) return self._check_add_Sum(expr, index_symbols) def _eval_partial_derivative(self, s): # type: (Tensor) -> Expr if not isinstance(s, Tensor): return S.Zero else: # @a_i/@a_k = delta_i^k # @a_i/@a^k = g_ij delta^j_k # @a^i/@a^k = delta^i_k # @a^i/@a_k = g^ij delta_j^k # TODO: if there is no metric present, the derivative should be zero? if self.head != s.head: return S.Zero # if heads are the same, provide delta and/or metric products # for every free index pair in the appropriate tensor # assumed that the free indices are in proper order # A contravariante index in the derivative becomes covariant # after performing the derivative and vice versa kronecker_delta_list = [1] # not guarantee a correct index order for (count, (iself, iother)) in enumerate(zip(self.get_free_indices(), s.get_free_indices())): if iself.tensor_index_type != iother.tensor_index_type: raise ValueError("index types not compatible") else: tensor_index_type = iself.tensor_index_type tensor_metric = tensor_index_type.metric dummy = TensorIndex("d_" + str(count), tensor_index_type, is_up=iself.is_up) if iself.is_up == iother.is_up: kroneckerdelta = tensor_index_type.delta(iself, -iother) else: kroneckerdelta = ( TensMul(tensor_metric(iself, dummy), tensor_index_type.delta(-dummy, -iother)) ) kronecker_delta_list.append(kroneckerdelta) return TensMul.fromiter(kronecker_delta_list).doit() # doit necessary to rename dummy indices accordingly class TensMul(TensExpr, AssocOp): """ Product of tensors. Parameters ========== coeff : SymPy coefficient of the tensor args Attributes ========== ``components`` : list of ``TensorHead`` of the component tensors ``types`` : list of nonrepeated ``TensorIndexType`` ``free`` : list of ``(ind, ipos, icomp)``, see Notes ``dum`` : list of ``(ipos1, ipos2, icomp1, icomp2)``, see Notes ``ext_rank`` : rank of the tensor counting the dummy indices ``rank`` : rank of the tensor ``coeff`` : SymPy coefficient of the tensor ``free_args`` : list of the free indices in sorted order ``is_canon_bp`` : ``True`` if the tensor in in canonical form Notes ===== ``args[0]`` list of ``TensorHead`` of the component tensors. ``args[1]`` list of ``(ind, ipos, icomp)`` where ``ind`` is a free index, ``ipos`` is the slot position of ``ind`` in the ``icomp``-th component tensor. ``args[2]`` list of tuples representing dummy indices. ``(ipos1, ipos2, icomp1, icomp2)`` indicates that the contravariant dummy index is the ``ipos1``-th slot position in the ``icomp1``-th component tensor; the corresponding covariant index is in the ``ipos2`` slot position in the ``icomp2``-th component tensor. """ identity = S.One _index_structure = None # type: _IndexStructure def __new__(cls, *args, **kw_args): is_canon_bp = kw_args.get('is_canon_bp', False) args = list(map(_sympify, args)) # Flatten: args = [i for arg in args for i in (arg.args if isinstance(arg, (TensMul, Mul)) else [arg])] args, indices, free, dum = TensMul._tensMul_contract_indices(args, replace_indices=False) # Data for indices: index_types = [i.tensor_index_type for i in indices] index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp) obj = TensExpr.__new__(cls, *args) obj._indices = indices obj._index_types = index_types[:] obj._index_structure = index_structure obj._free = index_structure.free[:] obj._dum = index_structure.dum[:] obj._free_indices = {x[0] for x in obj.free} obj._rank = len(obj.free) obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum) obj._coeff = S.One obj._is_canon_bp = is_canon_bp return obj index_types = property(lambda self: self._index_types) free = property(lambda self: self._free) dum = property(lambda self: self._dum) free_indices = property(lambda self: self._free_indices) rank = property(lambda self: self._rank) ext_rank = property(lambda self: self._ext_rank) @staticmethod def _indices_to_free_dum(args_indices): free2pos1 = {} free2pos2 = {} dummy_data = [] indices = [] # Notation for positions (to better understand the code): # `pos1`: position in the `args`. # `pos2`: position in the indices. # Example: # A(i, j)*B(k, m, n)*C(p) # `pos1` of `n` is 1 because it's in `B` (second `args` of TensMul). # `pos2` of `n` is 4 because it's the fifth overall index. # Counter for the index position wrt the whole expression: pos2 = 0 for pos1, arg_indices in enumerate(args_indices): for index_pos, index in enumerate(arg_indices): if not isinstance(index, TensorIndex): raise TypeError("expected TensorIndex") if -index in free2pos1: # Dummy index detected: other_pos1 = free2pos1.pop(-index) other_pos2 = free2pos2.pop(-index) if index.is_up: dummy_data.append((index, pos1, other_pos1, pos2, other_pos2)) else: dummy_data.append((-index, other_pos1, pos1, other_pos2, pos2)) indices.append(index) elif index in free2pos1: raise ValueError("Repeated index: %s" % index) else: free2pos1[index] = pos1 free2pos2[index] = pos2 indices.append(index) pos2 += 1 free = [(i, p) for (i, p) in free2pos2.items()] free_names = [i.name for i in free2pos2.keys()] dummy_data.sort(key=lambda x: x[3]) return indices, free, free_names, dummy_data @staticmethod def _dummy_data_to_dum(dummy_data): return [(p2a, p2b) for (i, p1a, p1b, p2a, p2b) in dummy_data] @staticmethod def _tensMul_contract_indices(args, replace_indices=True): replacements = [{} for _ in args] #_index_order = all(_has_index_order(arg) for arg in args) args_indices = [get_indices(arg) for arg in args] indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices) cdt = defaultdict(int) def dummy_name_gen(tensor_index_type): nd = str(cdt[tensor_index_type]) cdt[tensor_index_type] += 1 return tensor_index_type.dummy_name + '_' + nd if replace_indices: for old_index, pos1cov, pos1contra, pos2cov, pos2contra in dummy_data: index_type = old_index.tensor_index_type while True: dummy_name = dummy_name_gen(index_type) if dummy_name not in free_names: break dummy = TensorIndex(dummy_name, index_type, True) replacements[pos1cov][old_index] = dummy replacements[pos1contra][-old_index] = -dummy indices[pos2cov] = dummy indices[pos2contra] = -dummy args = [ arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg for arg, repl in zip(args, replacements)] dum = TensMul._dummy_data_to_dum(dummy_data) return args, indices, free, dum @staticmethod def _get_components_from_args(args): """ Get a list of ``Tensor`` objects having the same ``TIDS`` if multiplied by one another. """ components = [] for arg in args: if not isinstance(arg, TensExpr): continue if isinstance(arg, TensAdd): continue components.extend(arg.components) return components @staticmethod def _rebuild_tensors_list(args, index_structure): indices = index_structure.get_indices() #tensors = [None for i in components] # pre-allocate list ind_pos = 0 for i, arg in enumerate(args): if not isinstance(arg, TensExpr): continue prev_pos = ind_pos ind_pos += arg.ext_rank args[i] = Tensor(arg.component, indices[prev_pos:ind_pos]) def doit(self, **kwargs): is_canon_bp = self._is_canon_bp deep = kwargs.get('deep', True) if deep: args = [arg.doit(**kwargs) for arg in self.args] else: args = self.args args = [arg for arg in args if arg != self.identity] # Extract non-tensor coefficients: coeff = reduce(lambda a, b: a*b, [arg for arg in args if not isinstance(arg, TensExpr)], S.One) args = [arg for arg in args if isinstance(arg, TensExpr)] if len(args) == 0: return coeff if coeff != self.identity: args = [coeff] + args if coeff == 0: return S.Zero if len(args) == 1: return args[0] args, indices, free, dum = TensMul._tensMul_contract_indices(args) # Data for indices: index_types = [i.tensor_index_type for i in indices] index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp) obj = self.func(*args) obj._index_types = index_types obj._index_structure = index_structure obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum) obj._coeff = coeff obj._is_canon_bp = is_canon_bp return obj # TODO: this method should be private # TODO: should this method be renamed _from_components_free_dum ? @staticmethod def from_data(coeff, components, free, dum, **kw_args): return TensMul(coeff, *TensMul._get_tensors_from_components_free_dum(components, free, dum), **kw_args).doit() @staticmethod def _get_tensors_from_components_free_dum(components, free, dum): """ Get a list of ``Tensor`` objects by distributing ``free`` and ``dum`` indices on the ``components``. """ index_structure = _IndexStructure.from_components_free_dum(components, free, dum) indices = index_structure.get_indices() tensors = [None for i in components] # pre-allocate list # distribute indices on components to build a list of tensors: ind_pos = 0 for i, component in enumerate(components): prev_pos = ind_pos ind_pos += component.rank tensors[i] = Tensor(component, indices[prev_pos:ind_pos]) return tensors def _get_free_indices_set(self): return {i[0] for i in self.free} def _get_dummy_indices_set(self): dummy_pos = set(itertools.chain(*self.dum)) return {idx for i, idx in enumerate(self._index_structure.get_indices()) if i in dummy_pos} def _get_position_offset_for_indices(self): arg_offset = [None for i in range(self.ext_rank)] counter = 0 for i, arg in enumerate(self.args): if not isinstance(arg, TensExpr): continue for j in range(arg.ext_rank): arg_offset[j + counter] = counter counter += arg.ext_rank return arg_offset @property def free_args(self): return sorted([x[0] for x in self.free]) @property def components(self): return self._get_components_from_args(self.args) @property def free_in_args(self): arg_offset = self._get_position_offset_for_indices() argpos = self._get_indices_to_args_pos() return [(ind, pos-arg_offset[pos], argpos[pos]) for (ind, pos) in self.free] @property def coeff(self): # return Mul.fromiter([c for c in self.args if not isinstance(c, TensExpr)]) return self._coeff @property def nocoeff(self): return self.func(*[t for t in self.args if isinstance(t, TensExpr)]).doit() @property def dum_in_args(self): arg_offset = self._get_position_offset_for_indices() argpos = self._get_indices_to_args_pos() return [(p1-arg_offset[p1], p2-arg_offset[p2], argpos[p1], argpos[p2]) for p1, p2 in self.dum] def equals(self, other): if other == 0: return self.coeff == 0 other = _sympify(other) if not isinstance(other, TensExpr): assert not self.components return self.coeff == other return self.canon_bp() == other.canon_bp() def get_indices(self): """ Returns the list of indices of the tensor. Explanation =========== The indices are listed in the order in which they appear in the component tensors. The dummy indices are given a name which does not collide with the names of the free indices. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz) >>> g = Lorentz.metric >>> p, q = tensor_heads('p,q', [Lorentz]) >>> t = p(m1)*g(m0,m2) >>> t.get_indices() [m1, m0, m2] >>> t2 = p(m1)*g(-m1, m2) >>> t2.get_indices() [L_0, -L_0, m2] """ return self._indices def get_free_indices(self): # type: () -> List[TensorIndex] """ Returns the list of free indices of the tensor. Explanation =========== The indices are listed in the order in which they appear in the component tensors. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz) >>> g = Lorentz.metric >>> p, q = tensor_heads('p,q', [Lorentz]) >>> t = p(m1)*g(m0,m2) >>> t.get_free_indices() [m1, m0, m2] >>> t2 = p(m1)*g(-m1, m2) >>> t2.get_free_indices() [m2] """ return self._index_structure.get_free_indices() def _replace_indices(self, repl): # type: (tDict[TensorIndex, TensorIndex]) -> TensExpr return self.func(*[arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg for arg in self.args]) def split(self): """ Returns a list of tensors, whose product is ``self``. Explanation =========== Dummy indices contracted among different tensor components become free indices with the same name as the one used to represent the dummy indices. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads, TensorSymmetry >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz) >>> A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) >>> t = A(a,b)*B(-b,c) >>> t A(a, L_0)*B(-L_0, c) >>> t.split() [A(a, L_0), B(-L_0, c)] """ if self.args == (): return [self] splitp = [] res = 1 for arg in self.args: if isinstance(arg, Tensor): splitp.append(res*arg) res = 1 else: res *= arg return splitp def _expand(self, **hints): # TODO: temporary solution, in the future this should be linked to # `Expr.expand`. args = [_expand(arg, **hints) for arg in self.args] args1 = [arg.args if isinstance(arg, (Add, TensAdd)) else (arg,) for arg in args] return TensAdd(*[ TensMul(*i) for i in itertools.product(*args1)] ) def __neg__(self): return TensMul(S.NegativeOne, self, is_canon_bp=self._is_canon_bp).doit() def __getitem__(self, item): deprecate_data() with ignore_warnings(SymPyDeprecationWarning): return self.data[item] def _get_args_for_traditional_printer(self): args = list(self.args) if (self.coeff < 0) == True: # expressions like "-A(a)" sign = "-" if self.coeff == S.NegativeOne: args = args[1:] else: args[0] = -args[0] else: sign = "" return sign, args def _sort_args_for_sorted_components(self): """ Returns the ``args`` sorted according to the components commutation properties. Explanation =========== The sorting is done taking into account the commutation group of the component tensors. """ cv = [arg for arg in self.args if isinstance(arg, TensExpr)] sign = 1 n = len(cv) - 1 for i in range(n): for j in range(n, i, -1): c = cv[j-1].commutes_with(cv[j]) # if `c` is `None`, it does neither commute nor anticommute, skip: if c not in (0, 1): continue typ1 = sorted(set(cv[j-1].component.index_types), key=lambda x: x.name) typ2 = sorted(set(cv[j].component.index_types), key=lambda x: x.name) if (typ1, cv[j-1].component.name) > (typ2, cv[j].component.name): cv[j-1], cv[j] = cv[j], cv[j-1] # if `c` is 1, the anticommute, so change sign: if c: sign = -sign coeff = sign * self.coeff if coeff != 1: return [coeff] + cv return cv def sorted_components(self): """ Returns a tensor product with sorted components. """ return TensMul(*self._sort_args_for_sorted_components()).doit() def perm2tensor(self, g, is_canon_bp=False): """ Returns the tensor corresponding to the permutation ``g`` For further details, see the method in ``TIDS`` with the same name. """ return perm2tensor(self, g, is_canon_bp=is_canon_bp) def canon_bp(self): """ Canonicalize using the Butler-Portugal algorithm for canonicalization under monoterm symmetries. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, TensorSymmetry >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz) >>> A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2)) >>> t = A(m0,-m1)*A(m1,-m0) >>> t.canon_bp() -A(L_0, L_1)*A(-L_0, -L_1) >>> t = A(m0,-m1)*A(m1,-m2)*A(m2,-m0) >>> t.canon_bp() 0 """ if self._is_canon_bp: return self expr = self.expand() if isinstance(expr, TensAdd): return expr.canon_bp() if not expr.components: return expr t = expr.sorted_components() g, dummies, msym = t._index_structure.indices_canon_args() v = components_canon_args(t.components) can = canonicalize(g, dummies, msym, *v) if can == 0: return S.Zero tmul = t.perm2tensor(can, True) return tmul def contract_delta(self, delta): t = self.contract_metric(delta) return t def _get_indices_to_args_pos(self): """ Get a dict mapping the index position to TensMul's argument number. """ pos_map = dict() pos_counter = 0 for arg_i, arg in enumerate(self.args): if not isinstance(arg, TensExpr): continue assert isinstance(arg, Tensor) for i in range(arg.ext_rank): pos_map[pos_counter] = arg_i pos_counter += 1 return pos_map def contract_metric(self, g): """ Raise or lower indices with the metric ``g``. Parameters ========== g : metric Notes ===== See the ``TensorIndexType`` docstring for the contraction conventions. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz) >>> g = Lorentz.metric >>> p, q = tensor_heads('p,q', [Lorentz]) >>> t = p(m0)*q(m1)*g(-m0, -m1) >>> t.canon_bp() metric(L_0, L_1)*p(-L_0)*q(-L_1) >>> t.contract_metric(g).canon_bp() p(L_0)*q(-L_0) """ expr = self.expand() if self != expr: expr = expr.canon_bp() return expr.contract_metric(g) pos_map = self._get_indices_to_args_pos() args = list(self.args) #antisym = g.index_types[0].metric_antisym if g.symmetry == TensorSymmetry.fully_symmetric(-2): antisym = 1 elif g.symmetry == TensorSymmetry.fully_symmetric(2): antisym = 0 elif g.symmetry == TensorSymmetry.no_symmetry(2): antisym = None else: raise NotImplementedError # list of positions of the metric ``g`` inside ``args`` gpos = [i for i, x in enumerate(self.args) if isinstance(x, Tensor) and x.component == g] if not gpos: return self # Sign is either 1 or -1, to correct the sign after metric contraction # (for spinor indices). sign = 1 dum = self.dum[:] free = self.free[:] elim = set() for gposx in gpos: if gposx in elim: continue free1 = [x for x in free if pos_map[x[1]] == gposx] dum1 = [x for x in dum if pos_map[x[0]] == gposx or pos_map[x[1]] == gposx] if not dum1: continue elim.add(gposx) # subs with the multiplication neutral element, that is, remove it: args[gposx] = 1 if len(dum1) == 2: if not antisym: dum10, dum11 = dum1 if pos_map[dum10[1]] == gposx: # the index with pos p0 contravariant p0 = dum10[0] else: # the index with pos p0 is covariant p0 = dum10[1] if pos_map[dum11[1]] == gposx: # the index with pos p1 is contravariant p1 = dum11[0] else: # the index with pos p1 is covariant p1 = dum11[1] dum.append((p0, p1)) else: dum10, dum11 = dum1 # change the sign to bring the indices of the metric to contravariant # form; change the sign if dum10 has the metric index in position 0 if pos_map[dum10[1]] == gposx: # the index with pos p0 is contravariant p0 = dum10[0] if dum10[1] == 1: sign = -sign else: # the index with pos p0 is covariant p0 = dum10[1] if dum10[0] == 0: sign = -sign if pos_map[dum11[1]] == gposx: # the index with pos p1 is contravariant p1 = dum11[0] sign = -sign else: # the index with pos p1 is covariant p1 = dum11[1] dum.append((p0, p1)) elif len(dum1) == 1: if not antisym: dp0, dp1 = dum1[0] if pos_map[dp0] == pos_map[dp1]: # g(i, -i) typ = g.index_types[0] sign = sign*typ.dim else: # g(i0, i1)*p(-i1) if pos_map[dp0] == gposx: p1 = dp1 else: p1 = dp0 ind, p = free1[0] free.append((ind, p1)) else: dp0, dp1 = dum1[0] if pos_map[dp0] == pos_map[dp1]: # g(i, -i) typ = g.index_types[0] sign = sign*typ.dim if dp0 < dp1: # g(i, -i) = -D with antisymmetric metric sign = -sign else: # g(i0, i1)*p(-i1) if pos_map[dp0] == gposx: p1 = dp1 if dp0 == 0: sign = -sign else: p1 = dp0 ind, p = free1[0] free.append((ind, p1)) dum = [x for x in dum if x not in dum1] free = [x for x in free if x not in free1] # shift positions: shift = 0 shifts = [0]*len(args) for i in range(len(args)): if i in elim: shift += 2 continue shifts[i] = shift free = [(ind, p - shifts[pos_map[p]]) for (ind, p) in free if pos_map[p] not in elim] dum = [(p0 - shifts[pos_map[p0]], p1 - shifts[pos_map[p1]]) for i, (p0, p1) in enumerate(dum) if pos_map[p0] not in elim and pos_map[p1] not in elim] res = sign*TensMul(*args).doit() if not isinstance(res, TensExpr): return res im = _IndexStructure.from_components_free_dum(res.components, free, dum) return res._set_new_index_structure(im) def _set_new_index_structure(self, im, is_canon_bp=False): indices = im.get_indices() return self._set_indices(*indices, is_canon_bp=is_canon_bp) def _set_indices(self, *indices, is_canon_bp=False, **kw_args): if len(indices) != self.ext_rank: raise ValueError("indices length mismatch") args = list(self.args)[:] pos = 0 for i, arg in enumerate(args): if not isinstance(arg, TensExpr): continue assert isinstance(arg, Tensor) ext_rank = arg.ext_rank args[i] = arg._set_indices(*indices[pos:pos+ext_rank]) pos += ext_rank return TensMul(*args, is_canon_bp=is_canon_bp).doit() @staticmethod def _index_replacement_for_contract_metric(args, free, dum): for arg in args: if not isinstance(arg, TensExpr): continue assert isinstance(arg, Tensor) def substitute_indices(self, *index_tuples): new_args = [] for arg in self.args: if isinstance(arg, TensExpr): arg = arg.substitute_indices(*index_tuples) new_args.append(arg) return TensMul(*new_args).doit() def __call__(self, *indices): deprecate_call() free_args = self.free_args indices = list(indices) if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]: raise ValueError('incompatible types') if indices == free_args: return self t = self.substitute_indices(*list(zip(free_args, indices))) # object is rebuilt in order to make sure that all contracted indices # get recognized as dummies, but only if there are contracted indices. if len({i if i.is_up else -i for i in indices}) != len(indices): return t.func(*t.args) return t def _extract_data(self, replacement_dict): args_indices, arrays = zip(*[arg._extract_data(replacement_dict) for arg in self.args if isinstance(arg, TensExpr)]) coeff = reduce(operator.mul, [a for a in self.args if not isinstance(a, TensExpr)], S.One) indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices) dum = TensMul._dummy_data_to_dum(dummy_data) ext_rank = self.ext_rank free.sort(key=lambda x: x[1]) free_indices = [i[0] for i in free] return free_indices, coeff*_TensorDataLazyEvaluator.data_contract_dum(arrays, dum, ext_rank) @property def data(self): deprecate_data() with ignore_warnings(SymPyDeprecationWarning): dat = _tensor_data_substitution_dict[self.expand()] return dat @data.setter def data(self, data): deprecate_data() raise ValueError("Not possible to set component data to a tensor expression") @data.deleter def data(self): deprecate_data() raise ValueError("Not possible to delete component data to a tensor expression") def __iter__(self): deprecate_data() with ignore_warnings(SymPyDeprecationWarning): if self.data is None: raise ValueError("No iteration on abstract tensors") return self.data.__iter__() def _eval_rewrite_as_Indexed(self, *args): from sympy.concrete.summations import Sum index_symbols = [i.args[0] for i in self.get_indices()] args = [arg.args[0] if isinstance(arg, Sum) else arg for arg in args] expr = Mul.fromiter(args) return self._check_add_Sum(expr, index_symbols) def _eval_partial_derivative(self, s): # Evaluation like Mul terms = [] for i, arg in enumerate(self.args): # checking whether some tensor instance is differentiated # or some other thing is necessary, but ugly if isinstance(arg, TensExpr): d = arg._eval_partial_derivative(s) else: # do not call diff is s is no symbol if s._diff_wrt: d = arg._eval_derivative(s) else: d = S.Zero if d: terms.append(TensMul.fromiter(self.args[:i] + (d,) + self.args[i + 1:])) return TensAdd.fromiter(terms) class TensorElement(TensExpr): """ Tensor with evaluated components. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorSymmetry >>> from sympy import symbols >>> L = TensorIndexType("L") >>> i, j, k = symbols("i j k") >>> A = TensorHead("A", [L, L], TensorSymmetry.fully_symmetric(2)) >>> A(i, j).get_free_indices() [i, j] If we want to set component ``i`` to a specific value, use the ``TensorElement`` class: >>> from sympy.tensor.tensor import TensorElement >>> te = TensorElement(A(i, j), {i: 2}) As index ``i`` has been accessed (``{i: 2}`` is the evaluation of its 3rd element), the free indices will only contain ``j``: >>> te.get_free_indices() [j] """ def __new__(cls, expr, index_map): if not isinstance(expr, Tensor): # remap if not isinstance(expr, TensExpr): raise TypeError("%s is not a tensor expression" % expr) return expr.func(*[TensorElement(arg, index_map) for arg in expr.args]) expr_free_indices = expr.get_free_indices() name_translation = {i.args[0]: i for i in expr_free_indices} index_map = {name_translation.get(index, index): value for index, value in index_map.items()} index_map = {index: value for index, value in index_map.items() if index in expr_free_indices} if len(index_map) == 0: return expr free_indices = [i for i in expr_free_indices if i not in index_map.keys()] index_map = Dict(index_map) obj = TensExpr.__new__(cls, expr, index_map) obj._free_indices = free_indices return obj @property def free(self): return [(index, i) for i, index in enumerate(self.get_free_indices())] @property def dum(self): # TODO: inherit dummies from expr return [] @property def expr(self): return self._args[0] @property def index_map(self): return self._args[1] @property def coeff(self): return S.One @property def nocoeff(self): return self def get_free_indices(self): return self._free_indices def _replace_indices(self, repl): # type: (tDict[TensorIndex, TensorIndex]) -> TensExpr # TODO: can be improved: return self.xreplace(repl) def get_indices(self): return self.get_free_indices() def _extract_data(self, replacement_dict): ret_indices, array = self.expr._extract_data(replacement_dict) index_map = self.index_map slice_tuple = tuple(index_map.get(i, slice(None)) for i in ret_indices) ret_indices = [i for i in ret_indices if i not in index_map] array = array.__getitem__(slice_tuple) return ret_indices, array def canon_bp(p): """ Butler-Portugal canonicalization. See ``tensor_can.py`` from the combinatorics module for the details. """ if isinstance(p, TensExpr): return p.canon_bp() return p def tensor_mul(*a): """ product of tensors """ if not a: return TensMul.from_data(S.One, [], [], []) t = a[0] for tx in a[1:]: t = t*tx return t def riemann_cyclic_replace(t_r): """ replace Riemann tensor with an equivalent expression ``R(m,n,p,q) -> 2/3*R(m,n,p,q) - 1/3*R(m,q,n,p) + 1/3*R(m,p,n,q)`` """ free = sorted(t_r.free, key=lambda x: x[1]) m, n, p, q = [x[0] for x in free] t0 = t_r*Rational(2, 3) t1 = -t_r.substitute_indices((m,m),(n,q),(p,n),(q,p))*Rational(1, 3) t2 = t_r.substitute_indices((m,m),(n,p),(p,n),(q,q))*Rational(1, 3) t3 = t0 + t1 + t2 return t3 def riemann_cyclic(t2): """ Replace each Riemann tensor with an equivalent expression satisfying the cyclic identity. This trick is discussed in the reference guide to Cadabra. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, riemann_cyclic, TensorSymmetry >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L') >>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz) >>> R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann()) >>> t = R(i,j,k,l)*(R(-i,-j,-k,-l) - 2*R(-i,-k,-j,-l)) >>> riemann_cyclic(t) 0 """ t2 = t2.expand() if isinstance(t2, (TensMul, Tensor)): args = [t2] else: args = t2.args a1 = [x.split() for x in args] a2 = [[riemann_cyclic_replace(tx) for tx in y] for y in a1] a3 = [tensor_mul(*v) for v in a2] t3 = TensAdd(*a3).doit() if not t3: return t3 else: return canon_bp(t3) def get_lines(ex, index_type): """ Returns ``(lines, traces, rest)`` for an index type, where ``lines`` is the list of list of positions of a matrix line, ``traces`` is the list of list of traced matrix lines, ``rest`` is the rest of the elements ot the tensor. """ def _join_lines(a): i = 0 while i < len(a): x = a[i] xend = x[-1] xstart = x[0] hit = True while hit: hit = False for j in range(i + 1, len(a)): if j >= len(a): break if a[j][0] == xend: hit = True x.extend(a[j][1:]) xend = x[-1] a.pop(j) continue if a[j][0] == xstart: hit = True a[i] = reversed(a[j][1:]) + x x = a[i] xstart = a[i][0] a.pop(j) continue if a[j][-1] == xend: hit = True x.extend(reversed(a[j][:-1])) xend = x[-1] a.pop(j) continue if a[j][-1] == xstart: hit = True a[i] = a[j][:-1] + x x = a[i] xstart = x[0] a.pop(j) continue i += 1 return a arguments = ex.args dt = {} for c in ex.args: if not isinstance(c, TensExpr): continue if c in dt: continue index_types = c.index_types a = [] for i in range(len(index_types)): if index_types[i] is index_type: a.append(i) if len(a) > 2: raise ValueError('at most two indices of type %s allowed' % index_type) if len(a) == 2: dt[c] = a #dum = ex.dum lines = [] traces = [] traces1 = [] #indices_to_args_pos = ex._get_indices_to_args_pos() # TODO: add a dum_to_components_map ? for p0, p1, c0, c1 in ex.dum_in_args: if arguments[c0] not in dt: continue if c0 == c1: traces.append([c0]) continue ta0 = dt[arguments[c0]] ta1 = dt[arguments[c1]] if p0 not in ta0: continue if ta0.index(p0) == ta1.index(p1): # case gamma(i,s0,-s1) in c0, gamma(j,-s0,s2) in c1; # to deal with this case one could add to the position # a flag for transposition; # one could write [(c0, False), (c1, True)] raise NotImplementedError # if p0 == ta0[1] then G in pos c0 is mult on the right by G in c1 # if p0 == ta0[0] then G in pos c1 is mult on the right by G in c0 ta0 = dt[arguments[c0]] b0, b1 = (c0, c1) if p0 == ta0[1] else (c1, c0) lines1 = lines[:] for line in lines: if line[-1] == b0: if line[0] == b1: n = line.index(min(line)) traces1.append(line) traces.append(line[n:] + line[:n]) else: line.append(b1) break elif line[0] == b1: line.insert(0, b0) break else: lines1.append([b0, b1]) lines = [x for x in lines1 if x not in traces1] lines = _join_lines(lines) rest = [] for line in lines: for y in line: rest.append(y) for line in traces: for y in line: rest.append(y) rest = [x for x in range(len(arguments)) if x not in rest] return lines, traces, rest def get_free_indices(t): if not isinstance(t, TensExpr): return () return t.get_free_indices() def get_indices(t): if not isinstance(t, TensExpr): return () return t.get_indices() def get_index_structure(t): if isinstance(t, TensExpr): return t._index_structure return _IndexStructure([], [], [], []) def get_coeff(t): if isinstance(t, Tensor): return S.One if isinstance(t, TensMul): return t.coeff if isinstance(t, TensExpr): raise ValueError("no coefficient associated to this tensor expression") return t def contract_metric(t, g): if isinstance(t, TensExpr): return t.contract_metric(g) return t def perm2tensor(t, g, is_canon_bp=False): """ Returns the tensor corresponding to the permutation ``g`` For further details, see the method in ``TIDS`` with the same name. """ if not isinstance(t, TensExpr): return t elif isinstance(t, (Tensor, TensMul)): nim = get_index_structure(t).perm2tensor(g, is_canon_bp=is_canon_bp) res = t._set_new_index_structure(nim, is_canon_bp=is_canon_bp) if g[-1] != len(g) - 1: return -res return res raise NotImplementedError() def substitute_indices(t, *index_tuples): if not isinstance(t, TensExpr): return t return t.substitute_indices(*index_tuples) def _expand(expr, **kwargs): if isinstance(expr, TensExpr): return expr._expand(**kwargs) else: return expr.expand(**kwargs)