from sympy.core.numbers import Number from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.tensor.array.dense_ndim_array import MutableDenseNDimArray from sympy.tensor.tensor import (Tensor, TensExpr, TensAdd, TensMul, TensorIndex) class PartialDerivative(TensExpr): """ Partial derivative for tensor expressions. Examples ======== >>> from sympy.tensor.tensor import TensorIndexType, TensorHead >>> from sympy.tensor.toperators import PartialDerivative >>> from sympy import symbols >>> L = TensorIndexType("L") >>> A = TensorHead("A", [L]) >>> i, j = symbols("i j") >>> expr = PartialDerivative(A(i), A(j)) >>> expr PartialDerivative(A(i), A(j)) The ``PartialDerivative`` object behaves like a tensorial expression: >>> expr.get_indices() [i, -j] Indices can be contracted: >>> expr = PartialDerivative(A(i), A(i)) >>> expr PartialDerivative(A(L_0), A(L_0)) >>> expr.get_indices() [L_0, -L_0] """ def __new__(cls, expr, *variables): # Flatten: if isinstance(expr, PartialDerivative): variables = expr.variables + variables expr = expr.expr args, indices, free, dum = cls._contract_indices_for_derivative( S(expr), variables) obj = TensExpr.__new__(cls, *args) obj._indices = indices obj._free = free obj._dum = dum return obj @property def coeff(self): return S.One @property def nocoeff(self): return self @classmethod def _contract_indices_for_derivative(cls, expr, variables): variables_opposite_valence = [] for i in variables: if isinstance(i, Tensor): i_free_indices = i.get_free_indices() variables_opposite_valence.append( i.xreplace({k: -k for k in i_free_indices})) elif isinstance(i, Symbol): variables_opposite_valence.append(i) args, indices, free, dum = TensMul._tensMul_contract_indices( [expr] + variables_opposite_valence, replace_indices=True) for i in range(1, len(args)): args_i = args[i] if isinstance(args_i, Tensor): i_indices = args[i].get_free_indices() args[i] = args[i].xreplace({k: -k for k in i_indices}) return args, indices, free, dum def doit(self): args, indices, free, dum = self._contract_indices_for_derivative(self.expr, self.variables) obj = self.func(*args) obj._indices = indices obj._free = free obj._dum = dum return obj def _expand_partial_derivative(self): args, indices, free, dum = self._contract_indices_for_derivative(self.expr, self.variables) obj = self.func(*args) obj._indices = indices obj._free = free obj._dum = dum result = obj if not args[0].free_symbols: return S.Zero elif isinstance(obj.expr, TensAdd): # take care of sums of multi PDs result = obj.expr.func(*[ self.func(a, *obj.variables)._expand_partial_derivative() for a in result.expr.args]) elif isinstance(obj.expr, TensMul): # take care of products of multi PDs if len(obj.variables) == 1: # derivative with respect to single variable terms = [] mulargs = list(obj.expr.args) for ind in range(len(mulargs)): if not isinstance(sympify(mulargs[ind]), Number): # a number coefficient is not considered for # expansion of PartialDerivative d = self.func(mulargs[ind], *obj.variables)._expand_partial_derivative() terms.append(TensMul(*(mulargs[:ind] + [d] + mulargs[(ind + 1):]))) result = TensAdd.fromiter(terms) else: # derivative with respect to multiple variables # decompose: # partial(expr, (u, v)) # = partial(partial(expr, u).doit(), v).doit() result = obj.expr # init with expr for v in obj.variables: result = self.func(result, v)._expand_partial_derivative() # then throw PD on it return result def _perform_derivative(self): result = self.expr for v in self.variables: if isinstance(result, TensExpr): result = result._eval_partial_derivative(v) else: if v._diff_wrt: result = result._eval_derivative(v) else: result = S.Zero return result def get_indices(self): return self._indices def get_free_indices(self): free = sorted(self._free, key=lambda x: x[1]) return [i[0] for i in free] def _replace_indices(self, repl): expr = self.expr.xreplace(repl) mirrored = {-k: -v for k, v in repl.items()} variables = [i.xreplace(mirrored) for i in self.variables] return self.func(expr, *variables) @property def expr(self): return self.args[0] @property def variables(self): return self.args[1:] def _extract_data(self, replacement_dict): from .array import derive_by_array, tensorcontraction indices, array = self.expr._extract_data(replacement_dict) for variable in self.variables: var_indices, var_array = variable._extract_data(replacement_dict) var_indices = [-i for i in var_indices] coeff_array, var_array = zip(*[i.as_coeff_Mul() for i in var_array]) array = derive_by_array(array, var_array) array = array.as_mutable() # type: MutableDenseNDimArray varindex = var_indices[0] # type: TensorIndex # Remove coefficients of base vector: coeff_index = [0] + [slice(None) for i in range(len(indices))] for i, coeff in enumerate(coeff_array): coeff_index[0] = i array[tuple(coeff_index)] /= coeff if -varindex in indices: pos = indices.index(-varindex) array = tensorcontraction(array, (0, pos+1)) indices.pop(pos) else: indices.append(varindex) return indices, array