from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.containers import Tuple from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.logic.boolalg import And from sympy.core.symbol import Str from sympy.unify.core import Compound, Variable from sympy.unify.usympy import (deconstruct, construct, unify, is_associative, is_commutative) from sympy.abc import x, y, z, n def test_deconstruct(): expr = Basic(S(1), S(2), S(3)) expected = Compound(Basic, (1, 2, 3)) assert deconstruct(expr) == expected assert deconstruct(1) == 1 assert deconstruct(x) == x assert deconstruct(x, variables=(x,)) == Variable(x) assert deconstruct(Add(1, x, evaluate=False)) == Compound(Add, (1, x)) assert deconstruct(Add(1, x, evaluate=False), variables=(x,)) == \ Compound(Add, (1, Variable(x))) def test_construct(): expr = Compound(Basic, (S(1), S(2), S(3))) expected = Basic(S(1), S(2), S(3)) assert construct(expr) == expected def test_nested(): expr = Basic(S(1), Basic(S(2)), S(3)) cmpd = Compound(Basic, (S(1), Compound(Basic, Tuple(2)), S(3))) assert deconstruct(expr) == cmpd assert construct(cmpd) == expr def test_unify(): expr = Basic(S(1), S(2), S(3)) a, b, c = map(Symbol, 'abc') pattern = Basic(a, b, c) assert list(unify(expr, pattern, {}, (a, b, c))) == [{a: 1, b: 2, c: 3}] assert list(unify(expr, pattern, variables=(a, b, c))) == \ [{a: 1, b: 2, c: 3}] def test_unify_variables(): assert list(unify(Basic(S(1), S(2)), Basic(S(1), x), {}, variables=(x,))) == [{x: 2}] def test_s_input(): expr = Basic(S(1), S(2)) a, b = map(Symbol, 'ab') pattern = Basic(a, b) assert list(unify(expr, pattern, {}, (a, b))) == [{a: 1, b: 2}] assert list(unify(expr, pattern, {a: 5}, (a, b))) == [] def iterdicteq(a, b): a = tuple(a) b = tuple(b) return len(a) == len(b) and all(x in b for x in a) def test_unify_commutative(): expr = Add(1, 2, 3, evaluate=False) a, b, c = map(Symbol, 'abc') pattern = Add(a, b, c, evaluate=False) result = tuple(unify(expr, pattern, {}, (a, b, c))) expected = ({a: 1, b: 2, c: 3}, {a: 1, b: 3, c: 2}, {a: 2, b: 1, c: 3}, {a: 2, b: 3, c: 1}, {a: 3, b: 1, c: 2}, {a: 3, b: 2, c: 1}) assert iterdicteq(result, expected) def test_unify_iter(): expr = Add(1, 2, 3, evaluate=False) a, b, c = map(Symbol, 'abc') pattern = Add(a, c, evaluate=False) assert is_associative(deconstruct(pattern)) assert is_commutative(deconstruct(pattern)) result = list(unify(expr, pattern, {}, (a, c))) expected = [{a: 1, c: Add(2, 3, evaluate=False)}, {a: 1, c: Add(3, 2, evaluate=False)}, {a: 2, c: Add(1, 3, evaluate=False)}, {a: 2, c: Add(3, 1, evaluate=False)}, {a: 3, c: Add(1, 2, evaluate=False)}, {a: 3, c: Add(2, 1, evaluate=False)}, {a: Add(1, 2, evaluate=False), c: 3}, {a: Add(2, 1, evaluate=False), c: 3}, {a: Add(1, 3, evaluate=False), c: 2}, {a: Add(3, 1, evaluate=False), c: 2}, {a: Add(2, 3, evaluate=False), c: 1}, {a: Add(3, 2, evaluate=False), c: 1}] assert iterdicteq(result, expected) def test_hard_match(): from sympy.functions.elementary.trigonometric import (cos, sin) expr = sin(x) + cos(x)**2 p, q = map(Symbol, 'pq') pattern = sin(p) + cos(p)**2 assert list(unify(expr, pattern, {}, (p, q))) == [{p: x}] def test_matrix(): from sympy.matrices.expressions.matexpr import MatrixSymbol X = MatrixSymbol('X', n, n) Y = MatrixSymbol('Y', 2, 2) Z = MatrixSymbol('Z', 2, 3) assert list(unify(X, Y, {}, variables=[n, Str('X')])) == [{Str('X'): Str('Y'), n: 2}] assert list(unify(X, Z, {}, variables=[n, Str('X')])) == [] def test_non_frankenAdds(): # the is_commutative property used to fail because of Basic.__new__ # This caused is_commutative and str calls to fail expr = x+y*2 rebuilt = construct(deconstruct(expr)) # Ensure that we can run these commands without causing an error str(rebuilt) rebuilt.is_commutative def test_FiniteSet_commutivity(): from sympy.sets.sets import FiniteSet a, b, c, x, y = symbols('a,b,c,x,y') s = FiniteSet(a, b, c) t = FiniteSet(x, y) variables = (x, y) assert {x: FiniteSet(a, c), y: b} in tuple(unify(s, t, variables=variables)) def test_FiniteSet_complex(): from sympy.sets.sets import FiniteSet a, b, c, x, y, z = symbols('a,b,c,x,y,z') expr = FiniteSet(Basic(S(1), x), y, Basic(x, z)) pattern = FiniteSet(a, Basic(x, b)) variables = a, b expected = tuple([{b: 1, a: FiniteSet(y, Basic(x, z))}, {b: z, a: FiniteSet(y, Basic(S(1), x))}]) assert iterdicteq(unify(expr, pattern, variables=variables), expected) def test_and(): variables = x, y expected = tuple([{x: z > 0, y: n < 3}]) assert iterdicteq(unify((z>0) & (n<3), And(x, y), variables=variables), expected) def test_Union(): from sympy.sets.sets import Interval assert list(unify(Interval(0, 1) + Interval(10, 11), Interval(0, 1) + Interval(12, 13), variables=(Interval(12, 13),))) def test_is_commutative(): assert is_commutative(deconstruct(x+y)) assert is_commutative(deconstruct(x*y)) assert not is_commutative(deconstruct(x**y)) def test_commutative_in_commutative(): from sympy.abc import a,b,c,d from sympy.functions.elementary.trigonometric import (cos, sin) eq = sin(3)*sin(4)*sin(5) + 4*cos(3)*cos(4) pat = a*cos(b)*cos(c) + d*sin(b)*sin(c) assert next(unify(eq, pat, variables=(a,b,c,d)))